Multi-source, Multilingual Information Extraction and Summarization

  • Thierry Poibeau
  • Horacio Saggion
  • Jakub Piskorski
  • Roman Yangarber

Table of contents

  1. Front Matter
    Pages i-xx
  2. Background and Fundamentals

    1. Front Matter
      Pages 1-1
    2. Horacio Saggion, Thierry Poibeau
      Pages 3-21
    3. Jakub Piskorski, Roman Yangarber
      Pages 23-49
  3. Named Entity in a Multilingual Context

  4. Information Extraction

    1. Front Matter
      Pages 135-135
    2. Günter Neumann, Sven Schmeier
      Pages 137-161
    3. Silja Huttunen, Arto Vihavainen, Mian Du, Roman Yangarber
      Pages 163-176
    4. Heng Ji, Benoit Favre, Wen-Pin Lin, Dan Gillick, Dilek Hakkani-Tur, Ralph Grishman
      Pages 177-201
  5. Multi-Document Summarization

    1. Front Matter
      Pages 203-203
    2. Mijail Kabadjov, Josef Steinberger, Ralf Steinberger
      Pages 229-252
    3. Danushka Bollegala, Naoaki Okazaki, Mitsuru Ishizuka
      Pages 253-276
    4. Ricardo Ribeiro, David Martins de Matos
      Pages 277-297
    5. Ahmet Aker, Laura Plaza, Elena Lloret, Robert Gaizauskas
      Pages 299-320
  6. Back Matter
    Pages 321-323

About this book


Information extraction (IE) and text summarization (TS) are powerful technologies for finding relevant pieces of information in text and presenting them to the user in condensed form. The ongoing information explosion makes IE and TS critical for successful functioning within the information society.


These technologies face particular challenges due to the inherent multi-source nature of the information explosion.  The technologies must now handle not isolated texts or individual narratives, but rather large-scale repositories and streams---in general, in multiple languages---containing a multiplicity of perspectives, opinions, or commentaries on particular topics, entities or events.  There is thus a need to adapt existing techniques and develop new ones to deal with these challenges.


This volume contains a selection of papers that present a variety of methodologies for content identification and extraction, as well as for content fusion and regeneration. The chapters cover various aspects of the challenges, depending on the nature of the information sought---names vs. events,--- and the nature of the sources---news streams vs. image captions vs. scientific research papers, etc. This volume aims to offer a broad and representative sample of studies from this very active research field.


Content analysis Information extraction Multilinguality Text mining Text summarization

Editors and affiliations

  • Thierry Poibeau
    • 1
  • Horacio Saggion
    • 2
  • Jakub Piskorski
    • 3
  • Roman Yangarber
    • 4
  1. 1.Universite Sorbonne Nouvelle, LATTICE-CNRSEcole Normale Superieure andParisFrance
  2. 2., Information & Communication TechnologiesUniversitat Pompeu FabraBarcelonaSpain
  3. 3.Institute for Computer SciencePolish Acadmey of ScienceWarsawPoland
  4. 4.Department of Computer ScienceUniversity of HelsinkiHelsinkiFinland

Bibliographic information

  • DOI
  • Copyright Information Springer-Verlag Berlin Heidelberg 2013
  • Publisher Name Springer, Berlin, Heidelberg
  • eBook Packages Computer Science Computer Science (R0)
  • Print ISBN 978-3-642-28568-4
  • Online ISBN 978-3-642-28569-1
  • Series Print ISSN 2192-032X
  • Series Online ISSN 2192-0338
  • Buy this book on publisher's site
Industry Sectors
Finance, Business & Banking
IT & Software
Consumer Packaged Goods
Energy, Utilities & Environment
Oil, Gas & Geosciences