Advertisement

© 2010

Algebraic Geodesy and Geoinformatics

Book

Table of contents

  1. Front Matter
    Pages i-xviii
  2. Joseph L. Awange, Erik W. Grafarend, Béla Paláncz, Piroska Zaletnyik
    Pages 1-5
  3. Algebraic symbolic and numeric methods

    1. Front Matter
      Pages 7-7
    2. Joseph L. Awange, Erik W. Grafarend, Béla Paláncz, Piroska Zaletnyik
      Pages 9-16
    3. Joseph L. Awange, Erik W. Grafarend, Béla Paláncz, Piroska Zaletnyik
      Pages 17-32
    4. Joseph L. Awange, Erik W. Grafarend, Béla Paláncz, Piroska Zaletnyik
      Pages 33-47
    5. Joseph L. Awange, Erik W. Grafarend, Béla Paláncz, Piroska Zaletnyik
      Pages 49-62
    6. Joseph L. Awange, Erik W. Grafarend, Béla Paláncz, Piroska Zaletnyik
      Pages 63-77
    7. Joseph L. Awange, Erik W. Grafarend, Béla Paláncz, Piroska Zaletnyik
      Pages 79-99
    8. Joseph L. Awange, Erik W. Grafarend, Béla Paláncz, Piroska Zaletnyik
      Pages 101-110
    9. Joseph L. Awange, Erik W. Grafarend, Béla Paláncz, Piroska Zaletnyik
      Pages 111-135
  4. Applications to geodesy and geoinformatics

    1. Front Matter
      Pages 137-137
    2. Joseph L. Awange, Erik W. Grafarend, Béla Paláncz, Piroska Zaletnyik
      Pages 139-153
    3. Joseph L. Awange, Erik W. Grafarend, Béla Paláncz, Piroska Zaletnyik
      Pages 155-171
    4. Joseph L. Awange, Erik W. Grafarend, Béla Paláncz, Piroska Zaletnyik
      Pages 173-216
    5. Joseph L. Awange, Erik W. Grafarend, Béla Paláncz, Piroska Zaletnyik
      Pages 217-248
    6. Joseph L. Awange, Erik W. Grafarend, Béla Paláncz, Piroska Zaletnyik
      Pages 249-263
    7. Joseph L. Awange, Erik W. Grafarend, Béla Paláncz, Piroska Zaletnyik
      Pages 265-287
    8. Joseph L. Awange, Erik W. Grafarend, Béla Paláncz, Piroska Zaletnyik
      Pages 289-301
    9. Joseph L. Awange, Erik W. Grafarend, Béla Paláncz, Piroska Zaletnyik
      Pages 303-338

About this book

Introduction

The book presents modern and efficient methods for solving Geodetic and Geoinformatics algebraic problems. Numerous examples are illustrated with Mathematica using the computer algebra techniques of Ring, Polynomials, Groebner basis, Resultants (including Dixon resultants), Gauss-Jacobi combinatorial and Procrustes algorithms, as well as homotopy methods. While these problems are traditionally solved by approximate methods, this book presents alternative algebraic techniques based on computer algebra tools. ¬ This new approach meets such modern challenges as resection by laser techniques, solution of orientation in Robotics, transformation and bundle block adjustment in Geoinformatics, densification of Engineering networks, analytical solution for GNSS-meteorology and many other problems. For Mathematicians, the book provides some practical examples of the application of abstract algebra and multidimensional scaling.

Keywords

Algebraic computations Engineering GIS Photogrammetry Surveying computer algebra geodesy geoinformatics robotics

Authors and affiliations

  1. 1.Dept. Environmental Earth SciencesMaseno UniversityMasenoKenya
  2. 2.Geodätisches InstitutUniversität StuttgartStuttgartGermany
  3. 3.Technology & Economics, Dept. Photogrammetry & GeoinformaticsBudapest University ofBudapestHungary
  4. 4.Technology & Economics, Dept. Geodesy & SurveyingBudapest University ofBudapestHungary

Bibliographic information

Industry Sectors
Aerospace
Oil, Gas & Geosciences

Reviews

From the reviews of the second edition:

“I compliment the authors on this book because it brings together mathematical methods for the solution of multi-variable polynomial equations that are hardly covered side by side in any ordinary mathematical book: The book explains both algebraic ("exact") and numerical ("approximate") methods. It also points to the recent combination of algebraic and numerical methods ("hybrid" methods), which is currently one of the most promising directions in the area of computer mathematics. Prof. Dr.phil. Dr.h.c.mult. Bruno Buchberger, Professor of Computer Mathematics, and Head of Softwarepark Hagenberg. … As the person responsible for Mathematica's GroebnerBasis and NSolve implementations, I am delighted to see them put to such practical use. It is, moreover, a pleasure to see methods from an abstract branch of mathematics come into play in attacking problems from a very important branch of technology.” Daniel Lichtblau, Wolfram Research.

“The book consists of the two parts. In the first part, the authors give a review of some known results in linear algebra and numerical methods which are used in the second part. The second part is the basic in the book. … Each theoretical statement given in the book is accompanied with many careful neat examples. A rich bibliography envelopes all basic directions in algebraic geodesy and geoinformatics.”­­­ (I. V. Boikov, Zentralblatt MATH, Vol. 1197, 2010)