Advertisement

Scanning Force Microscopy of Polymers

  • Holger Schönherr
  • G. Julius Vancso

Part of the Springer Laboratory book series (SPLABORATORY)

Table of contents

  1. Front Matter
    Pages i-xiv
  2. Principles: Theory and Practice

    1. Front Matter
      Pages 1-1
    2. Holger Schönherr, G. Julius Vancso
      Pages 3-24
    3. Holger Schönherr, G. Julius Vancso
      Pages 25-75
  3. Case Studies: Macromolecules, Polymer Morphology and Polymer Surface Properties by AFM

    1. Front Matter
      Pages 78-78
    2. Holger Schönherr, G. Julius Vancso
      Pages 79-187
    3. Holger Schönherr, G. Julius Vancso
      Pages 189-236
  4. Back Matter
    Pages 237-248

About this book

Introduction

Scope of the Book Synthetic and natural polymers exhibit a complex structural and morphological hierarchy on multiple length scales [1], which determines their performance. Thus, research aiming at visualizing structure and morphology using a multitude of microscopy techniques has received considerable attention since the early days of polymer science and technology. Various well-developed techniques such as optical microscopy and different forms of electron microscopy (Scanning Electron Micr- copy, SEM; Transmission Electron Microscopy, TEM; Environmental Scanning Electron Microscopy, ESEM) allow one to view polymeric structure at different levels of magni?cation. These classical techniques, and their applications to po- mers, are well documented in the literature [2, 3]. The invention of Scanning Tunneling Microscopy (STM) inspired the devel- ment of Atomic Force Microscopy (AFM) and other forms of scanning proximity microscopes in the late 1980s [4, 5]. AFM, unlike STM, can be used to image n- conducting specimens such as polymers. In addition, AFM imaging is feasible in liquids, which has several advantages. Using liquid imaging cells the forces between specimen and AFM probe are drastically reduced, thus sample damage is prevented. In addition, the use of water as imaging medium opened up new applications aiming at imaging, characterizing, and analyzing biologically important systems.

Keywords

AFM Copolymer Homopolymer Makromoleküle Mikroskopie PET Polybuten Polyethylen Polymer Polymer Analytik Polymere Polypropylen Xanthan biopolymers morphology

Authors and affiliations

  • Holger Schönherr
    • 1
  • G. Julius Vancso
    • 2
  1. 1.FB Chemie, Biologie, Physikalische ChemieUniversität SiegenSiegenGermany
  2. 2.MESA Inst. Nanotechnology, Lab. Supramolecular Chemistry andUniversity of TwenteEnschedeNetherlands

Bibliographic information

Industry Sectors
Pharma
Materials & Steel
Chemical Manufacturing
Biotechnology
Consumer Packaged Goods
Oil, Gas & Geosciences