Advertisement

Local Newforms for GSp(4)

  • Brooks Roberts
  • Ralf Schmidt

Part of the Lecture Notes in Mathematics book series (LNM, volume 1918)

Table of contents

  1. Front Matter
    Pages I-VIII
  2. Pages 1-25
  3. Pages 27-83
  4. Pages 85-122
  5. Pages 123-149
  6. Pages 187-237
  7. Back Matter
    Pages 269-307

About this book

Introduction

Local Newforms for GSp(4) describes a theory of new- and oldforms for representations of GSp(4) over a non-archimedean local field. This theory considers vectors fixed by the paramodular groups, and singles out certain vectors that encode canonical information, such as L-factors and epsilon-factors, through their Hecke and Atkin-Lehner eigenvalues. While there are analogies to the GL(2) case, this theory is novel and unanticipated by the existing framework of conjectures. An appendix includes extensive tables about the results and the representation theory of GSp(4).

Keywords

Eigenvalue Newforms Node Representation theory Siegel algebraic number theory oldforms paramodular representations

Authors and affiliations

  • Brooks Roberts
    • 1
  • Ralf Schmidt
    • 2
  1. 1.University of Idaho83844-1103MoscowUSA
  2. 2.University of Oklahoma73019-0315NormanUSA

Bibliographic information

  • DOI https://doi.org/10.1007/978-3-540-73324-9
  • Copyright Information Springer-Verlag Berlin Heidelberg 2007
  • Publisher Name Springer, Berlin, Heidelberg
  • eBook Packages Mathematics and Statistics
  • Print ISBN 978-3-540-73323-2
  • Online ISBN 978-3-540-73324-9
  • Series Print ISSN 0075-8434
  • Buy this book on publisher's site
Industry Sectors
Pharma
Finance, Business & Banking
Telecommunications
Aerospace