© 2007

Asymmetry: The Foundation of Information


  • Consolidates diverse existing theories of information

  • Accessible to non-specialists


Part of the The Frontiers Collection book series (FRONTCOLL)

Table of contents

  1. Front Matter
    Pages I-VIII
  2. Pages 1-4
  3. Pages 5-66
  4. Pages 143-146
  5. Back Matter
    Pages 147-165

About this book


As individual needs have arisen in the fields of physics, electrical engineering and computational science, each has created its own theories of information to serve as conceptual instruments for advancing developments. This book provides a coherent consolidation of information theories from these different fields. The author gives a survey of current theories and then introduces the underlying notion of symmetry, showing how information is related to the capacity of a system to distinguish itself. A formal methodology using group theory is employed and leads to the application of Burnside's Lemma to count distinguishable states. This provides a versatile tool for quantifying complexity and information capacity in any physical system. Written in an informal style, the book is accessible to all researchers in the fields of physics, chemistry, biology, computational science as well as many others.


Entropy Group theory Information theory Symmetry information

Authors and affiliations

  1. 1.Suite 145 National Innovation CentreBernoulli SystemsEveleighAustralia

About the authors

Scott Muller graduated from the University of Queensland in Chemical Engineering specialising in biotechnology. He worked in Australia and Italy in the biotechnology and pharmaceutical industries. In 2004 he received his doctorate from the University of Newcastle (Australia) where he studied the foundations of information and conducted research into the nature of "emergence". Recently he has worked on automated reasoning and expert systems in the telecommunications industry. Scott is currently developing industrial, adaptive decision-making systems using evolutionary programming techniques.

Bibliographic information


From the reviews:

"The author is concerned with the meaning of the term ‘information’. He discusses theories of information that arise in thermodynamics and statistical mechanics, communication theory, and in complexity theory. … The book is more a contribution to epistemology … ." (L. L. Campbell, Mathematical Reviews, Issue 2008 k)