© 1996

Exploring Curvature

  • Einfache Experimente: Veranschaulichung differentialgeometrischer Begriffe


Table of contents

  1. Front Matter
    Pages i-xv
  2. James Casey
    Pages 1-34
  3. James Casey
    Pages 35-40
  4. James Casey
    Pages 41-44
  5. James Casey
    Pages 45-57
  6. James Casey
    Pages 80-91
  7. James Casey
    Pages 92-99
  8. James Casey
    Pages 100-112
  9. James Casey
    Pages 113-136
  10. James Casey
    Pages 137-153
  11. James Casey
    Pages 154-187
  12. James Casey
    Pages 188-192
  13. James Casey
    Pages 193-202
  14. James Casey
    Pages 203-222
  15. James Casey
    Pages 223-232
  16. James Casey
    Pages 233-244
  17. James Casey
    Pages 245-249

About this book


This introductory book, which is intuitive and exploratory in nature, is intended as a bridge between Euclid's geometry and the modern geometry of curved spaces. It is organized around a collection of simple experiments which the reader can perform at home or in a classroom setting. Methods for physically exploring the intrinsic geometry of commonplace curved objects (such as bowls, balls and watermelons) are described. The concepts of Gaussian curvature, parallel transport, and geodesics are treated. The book also contains biographical chapters on Gauss, Riemann, and Levi- Civita.


Gaussian curvature commonplace curved objects curvature euklidische Geometrie experiments geometry moderne Geometrie

Authors and affiliations

  1. 1.Department of Mechanical EngineeringUniversity of California, BerkeleyBerkeleyUSA

About the authors

Dr. J. Casey ist Professor an der University of California, Berkeley Department of Mechanical Engineering.

Bibliographic information

  • Book Title Exploring Curvature
  • Authors James Casey
  • DOI
  • Copyright Information Vieweg+Teubner Verlag | Springer Fachmedien Wiesbaden GmbH, Wiesbaden 1996
  • Publisher Name Vieweg+Teubner Verlag
  • eBook Packages Springer Book Archive
  • Softcover ISBN 978-3-528-06475-4
  • eBook ISBN 978-3-322-80274-3
  • Edition Number 1
  • Number of Pages XVI, 291
  • Number of Illustrations 51 b/w illustrations, 0 illustrations in colour
  • Topics Geometry
    Mathematics, general
  • Buy this book on publisher's site