Advertisement

Fuzzy Operator Theory in Mathematical Analysis

  • Yeol Je Cho
  • Themistocles M. Rassias
  • Reza Saadati
Book

Table of contents

  1. Front Matter
    Pages i-xiii
  2. Yeol Je Cho, Themistocles M. Rassias, Reza Saadati
    Pages 1-9
  3. Yeol Je Cho, Themistocles M. Rassias, Reza Saadati
    Pages 11-43
  4. Yeol Je Cho, Themistocles M. Rassias, Reza Saadati
    Pages 45-62
  5. Yeol Je Cho, Themistocles M. Rassias, Reza Saadati
    Pages 63-67
  6. Yeol Je Cho, Themistocles M. Rassias, Reza Saadati
    Pages 69-153
  7. Yeol Je Cho, Themistocles M. Rassias, Reza Saadati
    Pages 155-176
  8. Yeol Je Cho, Themistocles M. Rassias, Reza Saadati
    Pages 177-261
  9. Yeol Je Cho, Themistocles M. Rassias, Reza Saadati
    Pages 263-283
  10. Yeol Je Cho, Themistocles M. Rassias, Reza Saadati
    Pages 285-309
  11. Yeol Je Cho, Themistocles M. Rassias, Reza Saadati
    Pages 311-337
  12. Yeol Je Cho, Themistocles M. Rassias, Reza Saadati
    Pages 339-346
  13. Yeol Je Cho, Themistocles M. Rassias, Reza Saadati
    Pages 347-381
  14. Yeol Je Cho, Themistocles M. Rassias, Reza Saadati
    Pages 383-399
  15. Back Matter
    Pages 401-410

About this book

Introduction

This self-contained monograph presents an overview of fuzzy operator theory in mathematical analysis. Concepts, principles, methods, techniques, and applications of fuzzy operator theory are unified in this book to provide an introduction to graduate students and researchers in mathematics, applied sciences, physics, engineering, optimization, and operations research.  New approaches to fuzzy operator theory and fixed point theory with applications to fuzzy metric spaces, fuzzy normed spaces, partially ordered fuzzy metric spaces, fuzzy normed algebras, and non-Archimedean fuzzy metric spaces are presented. 

Surveys are provided on: Basic theory of fuzzy metric and normed spaces and its topology, fuzzy normed and Banach spaces, linear operators, fundamental theorems (open mapping and closed graph), applications of contractions and fixed point theory, approximation theory and best proximity theory, fuzzy metric type space, topology and applications.

Keywords

Banach spaces approximation theory best proximity theory fixed point theory fundamental theorems fuzzy metric fuzzy operator theory normed spaces Non-Archimedean fuzzy normed spaces Triangular norms Fuzzy topological structures Fuzzy normed spaces Finite dimensional fuzzy Banach spaces Fixed point theorems in partially ordered fuzzy metric spaces Fuzzy proximal cyclic contractions Nonlinear approximation theory Ordered non-Archimedean fuzzy metric spaces set-valued mappings in fuzzy metric spaces Open mapping theorem Closed graph theorem

Authors and affiliations

  • Yeol Je Cho
    • 1
  • Themistocles M. Rassias
    • 2
  • Reza Saadati
    • 3
  1. 1.Department of Mathematical EducationGyeongsang National UniversityJinjuKorea (Republic of)
  2. 2.Department of MathematicsNational Technical University of AthensAthensGreece
  3. 3.Department of MathematicsIran University of Science and TechnologyTehranIran

Bibliographic information

  • DOI https://doi.org/10.1007/978-3-319-93501-0
  • Copyright Information Springer International Publishing AG, part of Springer Nature 2018
  • Publisher Name Springer, Cham
  • eBook Packages Mathematics and Statistics
  • Print ISBN 978-3-319-93499-0
  • Online ISBN 978-3-319-93501-0
  • Buy this book on publisher's site