Applications of Nonlinear Analysis

  • Themistocles M. Rassias

Part of the Springer Optimization and Its Applications book series (SOIA, volume 134)

Table of contents

  1. Front Matter
    Pages i-xvi
  2. Shoshana Abramovich
    Pages 1-20
  3. Richard I. Avery, Douglas R. Anderson, Johnny Henderson
    Pages 21-35
  4. Antonio Causa, Giandomenico Mastroeni, Fabio Raciti
    Pages 37-60
  5. M. Cho, A. A. Khan, T. Malysheva, M. Sama, L. White
    Pages 61-100
  6. G. Colajanni, Patrizia Daniele, Sofia Giuffrè, Antonino Maugeri
    Pages 101-139
  7. Nicholas J. Daras
    Pages 141-173
  8. Qiao-Li Dong, Yeol Je Cho, Themistocles M. Rassias
    Pages 175-191
  9. Gabriele Eichfelder, Maria Pilecka
    Pages 265-304
  10. Francesca Faraci, George Smyrlis
    Pages 305-334
  11. Wolfgang Förg-Rob
    Pages 335-353
  12. D. Goeleven, R. Oujja
    Pages 355-385
  13. Theodoros P. Horikis, Dimitrios J. Frantzeskakis
    Pages 403-446
  14. Hassan Azadi Kenary, Choonkil Park, Themistocles M. Rassias, Jung Rye Lee
    Pages 447-482
  15. Hassan Azadi Kenary, Themistocles M. Rassias
    Pages 483-506
  16. Hassan Azadi Kenary, Themistocles M. Rassias
    Pages 507-522
  17. Vassilis S. Kalantonis, Angela E. Perdiou, Christos N. Douskos
    Pages 523-535
  18. Kyriakos Papadopoulos, Apostolos Syropoulos
    Pages 581-590
  19. I. N. Parasidis, E. Providas
    Pages 591-609
  20. Michael Th. Rassias, Bicheng Yang
    Pages 665-679
  21. Biagio Ricceri
    Pages 681-710
  22. Mihai Turinici
    Pages 781-825
  23. Theodoros T. Zygiridis, Nikolaos V. Kantartzis
    Pages 897-931

About this book


New applications, research, and fundamental theories in nonlinear analysis are presented in this book. Each chapter provides a unique insight into a large domain of research focusing on functional equations, stability theory, approximation theory, inequalities, nonlinear functional analysis, and calculus of variations with applications to optimization theory.

Topics include:

  • Fixed point theory
  • Fixed-circle theory
  • Coupled fixed points
  • Nonlinear duality in Banach spaces
  • Jensen's integral inequality and applications
  • Nonlinear differential equations
  • Nonlinear integro-differential equations
  • Quasiconvexity, Stability of a Cauchy-Jensen additive mapping
  • Generalizations of metric spaces
  • Hilbert-type integral inequality, Solitons
  • Quadratic functional equations in fuzzy Banach spaces
  • Asymptotic orbits in Hill’sproblem
  • Time-domain electromagnetics
  • Inertial Mann algorithms
  • Mathematical modelling
  • Robotics
Graduate students and researchers will find this book helpful in comprehending current applications and developments in mathematical analysis. Research scientists and engineers studying essential modern methods and techniques to solve a variety of problems will find this book a valuable source filled with examples that illustrate concepts.


Nonlinear Analysis stability of Ulam type applications of γ-quasiconvexity fixed point theorem mixed variational problems processing big data Jensen's integral inequality inertial Mann algorithms nonexpansive mappings Ordering structures The Pilgerschritt (Liedl) transform on manifolds lubrication theory mathematical models nonlinear two parameter matrix eigenvalue problem Cauchy-Jensen additive mapping fuzzy Banach spaces Weighing Matrices nonlinear integro-differential equations Hilbert-type integral inequality

Editors and affiliations

  • Themistocles M. Rassias
    • 1
  1. 1.Department of MathematicsNational Technical University of AthensAthensGreece

Bibliographic information