Advertisement

Non-Newtonian Fluid Mechanics and Complex Flows

Levico Terme, Italy 2016

  • Angiolo Farina
  • Lorenzo Fusi
  • Andro Mikelić
  • Giuseppe Saccomandi
  • Adélia Sequeira
  • Eleuterio F. Toro
  • Angiolo Farina
  • Andro Mikelić
  • Fabio Rosso

Part of the Lecture Notes in Mathematics book series (LNM, volume 2212)

Also part of the C.I.M.E. Foundation Subseries book sub series (LNMCIME, volume 2212)

Table of contents

  1. Front Matter
    Pages i-ix
  2. Angiolo Farina, Lorenzo Fusi
    Pages 229-298
  3. Angiolo Farina, Lorenzo Fusi, Andro Mikelić, Giuseppe Saccomandi, Adélia Sequeira, Eleuterio F. Toro
    Pages E1-E1
  4. Back Matter
    Pages 299-300

About this book

Introduction

This book presents a series of challenging mathematical problems which arise in the modeling of Non-Newtonian fluid dynamics. It focuses in particular on the mathematical and physical modeling of a variety of contemporary problems, and provides some results.
 
The flow properties of Non-Newtonian fluids differ in many ways from those of Newtonian fluids. Many biological fluids (blood, for instance) exhibit a non-Newtonian behavior, as do many naturally occurring or technologically relevant fluids such as molten polymers, oil, mud, lava, salt solutions, paint, and so on.
 
The term "complex flows" usually refers to those fluids presenting an "internal structure" (fluid mixtures, solutions, multiphase flows, and so on). Modern research on complex flows has increased considerably in recent years due to the many biological and industrial applications.

Keywords

Non Newtonian Fluids Bingham Fluids Hemorheology Implicit Constitutive Laws Homogenization Modeling Viscoplastic Fluids

Authors and affiliations

  • Angiolo Farina
    • 1
  • Lorenzo Fusi
    • 2
  • Andro Mikelić
    • 3
  • Giuseppe Saccomandi
    • 4
  • Adélia Sequeira
    • 5
  • Eleuterio F. Toro
    • 6
  1. 1.Dipartimento di Matematica e Informatica “Ulisse Dini”Università degli Studi di FirenzeFirenzeItaly
  2. 2.Dipartimento di Matematica e Informatica "Ulisse Dini"Università degli Studi di Firenze, Firenze, ItalyFIRENZEItaly
  3. 3.Département de Mathématiques, Institut Camille JordanUniversité Claude Bernard Lyon 1VilleurbanneFrance
  4. 4.Dipartimento di IngegneriaUniversità degli Studi di PerugiaPerugiaItaly
  5. 5.Department de MatemáticaInstituto Superior TécnicoLisboaPortugal
  6. 6.Dipartimento di MatematicaUniversity of TrentoTrentoItaly

Editors and affiliations

  • Angiolo Farina
    • 1
  • Andro Mikelić
    • 2
  • Fabio Rosso
    • 3
  1. 1.Dipartimento di Matematica e Informatica "Ulisse Dini"Università degli Studi di Firenze FirenzeItaly
  2. 2.Département de Mathématiques, Institut Camille JordanUniversité Claude Bernard Lyon 1VilleurbanneFrance
  3. 3.Dipartimento di Matematica e Informatica "Ulisse Dini"Università degli Studi di FirenzeFirenzeItaly

Bibliographic information

  • DOI https://doi.org/10.1007/978-3-319-74796-5
  • Copyright Information Springer International Publishing AG, part of Springer Nature 2018
  • Publisher Name Springer, Cham
  • eBook Packages Mathematics and Statistics
  • Print ISBN 978-3-319-74795-8
  • Online ISBN 978-3-319-74796-5
  • Series Print ISSN 0075-8434
  • Series Online ISSN 1617-9692
  • Buy this book on publisher's site
Industry Sectors
Pharma
Oil, Gas & Geosciences