Advertisement

Applied Linear Algebra and Matrix Analysis

  • Thomas S. Shores

Part of the Undergraduate Texts in Mathematics book series (UTM)

Table of contents

  1. Front Matter
    Pages i-xii
  2. Thomas S. Shores
    Pages 1-64
  3. Thomas S. Shores
    Pages 65-180
  4. Thomas S. Shores
    Pages 181-276
  5. Thomas S. Shores
    Pages 277-330
  6. Thomas S. Shores
    Pages 331-390
  7. Thomas S. Shores
    Pages 391-444
  8. Back Matter
    Pages 445-479

About this book

Introduction

In its second edition, this textbook offers a fresh approach to matrix and linear algebra. Its blend of theory, computational exercises, and analytical writing projects is designed to highlight the interplay between these aspects of an application. This approach places special emphasis on linear algebra as an experimental science that provides tools for solving concrete problems.

The second edition’s revised text discusses applications of linear algebra like graph theory and network modeling methods used in Google’s PageRank algorithm. Other new materials include modeling examples of diffusive processes, linear programming, image processing, digital signal processing, and Fourier analysis. These topics are woven into the core material of Gaussian elimination and other matrix operations; eigenvalues, eigenvectors, and discrete dynamical systems; and the geometrical aspects of vector spaces.

Intended for a one-semester undergraduate course without a strict calculus prerequisite, Applied Linear Algebra and Matrix Analysis augments the key elements of linear algebra with a wide choice of optional sections. With the book’s selection of applications and platform-independent assignments, instructors can tailor the curriculum to suit specific interests and ensure students across various disciplines are equipped with the powerful tools of linear algebra. 


Keywords

Gaussian elimination singular value decomposition Gram-Schmidt algorithm orthogonal diagonalization vector spaces discrete dynamical systems matrix algebra operator norms applied linear algebra textbook Google PageRank linear programming digital signal processing diffusive processes

Authors and affiliations

  • Thomas S. Shores
    • 1
  1. 1.Department of MathematicsUniversity of Nebraska–LincolnLincolnUSA

Bibliographic information

  • DOI https://doi.org/10.1007/978-3-319-74748-4
  • Copyright Information Springer International Publishing AG, part of Springer Nature 2018
  • Publisher Name Springer, Cham
  • eBook Packages Mathematics and Statistics
  • Print ISBN 978-3-319-74747-7
  • Online ISBN 978-3-319-74748-4
  • Series Print ISSN 0172-6056
  • Series Online ISSN 2197-5604
  • Buy this book on publisher's site
Industry Sectors
Pharma
Automotive
Finance, Business & Banking
Electronics
Telecommunications
Aerospace
Oil, Gas & Geosciences