Special Metrics and Group Actions in Geometry

  • Simon G. Chiossi
  • Anna Fino
  • Emilio Musso
  • Fabio Podestà
  • Luigi Vezzoni

Part of the Springer INdAM Series book series (SINDAMS, volume 23)

Table of contents

  1. Front Matter
    Pages i-x
  2. Fiammetta Battaglia, Dan Zaffran
    Pages 1-21
  3. Giovanni Bazzoni, Indranil Biswas, Marisa Fernández, Vicente Muñoz, Aleksy Tralle
    Pages 23-57
  4. Vicente Cortés, Malte Dyckmanns, Stefan Suhr
    Pages 81-106
  5. Andrew Dancer, Andrew Swann
    Pages 107-127
  6. Johann Davidov
    Pages 129-159
  7. Paul Gauduchon, Andrei Moroianu
    Pages 161-205
  8. Andrea Loi, Fabio Zuddas
    Pages 215-239
  9. Jason D. Lotay, Thomas Bruun Madsen
    Pages 241-267
  10. Antonio Otal, Luis Ugarte, Raquel Villacampa
    Pages 269-290
  11. Simon Salamon
    Pages 307-338

About this book


The volume is a follow-up to the INdAM meeting “Special metrics and quaternionic geometry” held in Rome in November 2015. It offers a panoramic view of a selection of cutting-edge topics in differential geometry, including 4-manifolds, quaternionic and octonionic geometry, twistor spaces, harmonic maps, spinors, complex and conformal geometry, homogeneous spaces and nilmanifolds, special geometries in dimensions 5–8, gauge theory, symplectic and toric manifolds, exceptional holonomy and integrable systems. The workshop was held in honor of Simon Salamon, a leading international scholar at the forefront of academic research who has made significant contributions to all these subjects. The articles published here represent a compelling testimony to Salamon’s profound and longstanding impact on the mathematical community. Target readership includes graduate students and researchers working in Riemannian and complex geometry, Lie theory and mathematical physics.


Special metrics G-structures Holonomy theory Quaternionic manifolds Almost Hermitan geometry

Editors and affiliations

  • Simon G. Chiossi
    • 1
  • Anna Fino
    • 2
  • Emilio Musso
    • 3
  • Fabio Podestà
    • 4
  • Luigi Vezzoni
    • 5
  1. 1.GMA - IMEUniversidade Federal Fluminense GMA - IMENiteroiBrazil
  2. 2.Dipartimento di Mathematica "G. Peano"Università di TorinoTorinoItaly
  3. 3.Dipartimento di Matematica e InformaticaUniversità di FirenzeFirenzeItaly
  4. 4.Dipartimento di Scienze MatematichePolitecnico di TorinoTorinoItaly
  5. 5.Dipart. di Matematica, Giuseppe PeanoUniversità di TorinoTorinoItaly

Bibliographic information