© 2017

Algorithms for Next-Generation Sequencing Data

Techniques, Approaches, and Applications

  • Mourad Elloumi

Table of contents

  1. Front Matter
    Pages i-xiii
  2. Indexing, Compression, and Storage of NGS Data

    1. Front Matter
      Pages 1-1
    2. Nadia Ben Nsira, Thierry Lecroq, Mourad Elloumi
      Pages 3-39
    3. David Weese, Enrico Siragusa
      Pages 41-75
    4. Costas S. Iliopoulos, Solon P. Pissis, M. Sohel Rahman
      Pages 77-90
    5. Gaetan Benoit, Claire Lemaitre, Guillaume Rizk, Erwan Drezen, Dominique Lavenier
      Pages 91-115
    6. Evangelos Theodoridis
      Pages 117-128
  3. Error Correction in NGS Data

    1. Front Matter
      Pages 129-129
    2. Marcel H. Schulz, Ziv Bar-Joseph
      Pages 131-145
    3. David Weese, Marcel H. Schulz, Hugues Richard
      Pages 147-166
    4. Guillermo Barturen, José L. Oliver, Michael Hackenberg
      Pages 167-183
  4. Alignment of NGS Data

  5. Assembly of NGS Data

    1. Front Matter
      Pages 265-265
    2. Géraldine Jean, Andreea Radulescu, Irena Rusu
      Pages 267-298
    3. Tomáš Flouri, Jiajie Zhang, Lucas Czech, Kassian Kobert, Alexandros Stamatakis
      Pages 299-325
    4. Matteo Comin, Michele Schimd
      Pages 327-355

About this book


The 14 contributed chapters in this book survey the most recent developments in high-performance algorithms for NGS data, offering fundamental insights and technical information specifically on indexing, compression and storage; error correction; alignment; and assembly.

The book will be of value to researchers, practitioners and students engaged with bioinformatics, computer science, mathematics, statistics and life sciences.


Bioinformatics Computational Molecular Biology Computational Systems Biology DNA Sequencing Molecular Biology Motifs Next-Generation Sequencing (NGS) Single Nucleotide Polymorphism (SNP) Variant Detection

Editors and affiliations

  • Mourad Elloumi
    • 1
  1. 1.LaTICETunisTunisia

Bibliographic information

Industry Sectors