Disc Winds Matter

Modelling Accretion and Outflows on All Scales

  • James Matthews

Part of the Springer Theses book series (Springer Theses)

Table of contents

  1. Front Matter
    Pages i-xxxviii
  2. James Matthews
    Pages 1-38
  3. James Matthews
    Pages 39-75
  4. James Matthews
    Pages 77-120
  5. James Matthews
    Pages 197-205
  6. Back Matter
    Pages 207-210

About this book


This thesis describes the application of a Monte Carlo radiative transfer code to accretion disc winds in two types of systems spanning 9 orders of magnitude in mass and size. In both cases, the results provide important new insights. On small scales, the presence of disc winds in accreting white dwarf binary systems has long been inferred from the presence of ultraviolet absorption lines. Here, the thesis shows that the same winds can also produce optical emission lines and a recombination continuum. On large scales, the thesis constructs a simple model of disc winds in quasars that is capable of explaining both the observed absorption and emission signatures – a crucial advance that supports a disc-wind based unification scenario for quasars. Lastly, the thesis also includes a theoretical investigation into the equivalent width distribution of the emission lines in quasars, which reveals a major challenge to all unification scenarios.


Astrophysical Outflows Accretion Disc Winds Quasars and Active Galactic Nuclei Radiative Transfer in Accretions Disks and Winds Accreting White Dwarfs Cataclysmic Variables Computational Astrophysics

Authors and affiliations

  • James Matthews
    • 1
  1. 1.Department of PhysicsUniversity of OxfordOxfordUnited Kingdom

Bibliographic information