Advertisement

Differential and Complex Geometry: Origins, Abstractions and Embeddings

  • Raymond O.  Wells, Jr.

Table of contents

  1. Front Matter
    Pages i-xiv
  2. Geometry in the Age of Enlightenment

    1. Front Matter
      Pages 1-3
    2. Raymond O. Wells Jr.
      Pages 5-16
    3. Raymond O. Wells Jr.
      Pages 17-30
  3. Differential and Projective Geometry in the Nineteenth Century

    1. Front Matter
      Pages 31-31
    2. Raymond O. Wells Jr.
      Pages 33-47
    3. Raymond O. Wells Jr.
      Pages 49-58
    4. Raymond O. Wells Jr.
      Pages 59-69
  4. Origins of Complex Geometry

    1. Front Matter
      Pages 71-73
    2. Raymond O. Wells Jr.
      Pages 75-81
    3. Raymond O. Wells Jr.
      Pages 83-95
    4. Raymond O. Wells Jr.
      Pages 97-112
    5. Raymond O. Wells Jr.
      Pages 113-135
    6. Raymond O. Wells Jr.
      Pages 137-158
    7. Raymond O. Wells Jr.
      Pages 159-165
  5. Twentieth-Century Embedding Theorems

    1. Front Matter
      Pages 167-173
    2. Raymond O. Wells Jr.
      Pages 175-185
    3. Raymond O. Wells Jr.
      Pages 187-210
    4. Raymond O. Wells Jr.
      Pages 211-268
    5. Raymond O. Wells Jr.
      Pages 269-302
  6. Back Matter
    Pages 303-319

About this book

Introduction

Differential and complex geometry are two central areas of mathematics with a long and intertwined history. This book, the first to provide a unified historical perspective of both subjects, explores their origins and developments from the sixteenth to the twentieth century.

Providing a detailed examination of the seminal contributions to differential and complex geometry up to the twentieth century embedding theorems, this monograph includes valuable excerpts from the original documents, including works of Descartes, Fermat, Newton, Euler, Huygens, Gauss, Riemann, Abel, and Nash.

Suitable for beginning graduate students interested in differential, algebraic or complex geometry, this book will also appeal to more experienced readers.

Keywords

differential geometry complex geometry differentiable manifold complex manifold Riemannian metric Riemannian manifold complex analysis abelian functions elliptic functions projective geometry MSC (2010): 01-02, 30-02, 32-02, 14-02, 51-02, 53-02, 55-02

Authors and affiliations

  • Raymond O.  Wells, Jr.
    • 1
  1. 1.Jacobs University Bremen / University of Colorado at BoulderBoulderUSA

Bibliographic information

Industry Sectors
Aerospace