Handbook of Mathematical Geodesy

Functional Analytic and Potential Theoretic Methods

  • Willi Freeden
  • M. Zuhair Nashed

Part of the Geosystems Mathematics book series (GSMA)

Table of contents

  1. Front Matter
    Pages i-xiv
  2. Matthias Augustin, Sarah Eberle, Martin Grothaus
    Pages 165-199
  3. Martin Grothaus, Thomas Raskop
    Pages 491-516
  4. Matthias Augustin, Willi Freeden, Helga Nutz
    Pages 517-560
  5. Willi Freeden, Helga Nutz, Michael Schreiner
    Pages 561-604
  6. Willi Freeden, M. Zuhair Nashed
    Pages 641-685
  7. C. Blick, W. Freeden, H. Nutz
    Pages 687-751
  8. Willi Freeden, Volker Michel, Frederik J. Simons
    Pages 753-819
  9. Christian Gerhards
    Pages 821-853
  10. Christian Gerhards, Sergiy Pereverzyev Jr., Pavlo Tkachenko
    Pages 855-882
  11. Sarah Leweke, Volker Michel, Roger Telschow
    Pages 883-919
  12. Back Matter
    Pages 921-932

About this book


Written by leading experts, this book provides a clear and comprehensive survey of the “status quo” of the interrelating process and cross-fertilization of structures and methods in mathematical geodesy. Starting with a foundation of functional analysis, potential theory, constructive approximation, special function theory, and inverse problems, readers are subsequently introduced to today’s least squares approximation, spherical harmonics reflected spline and wavelet concepts, boundary value problems, Runge-Walsh framework, geodetic observables, geoidal modeling, ill-posed problems and regularizations, inverse gravimetry, and satellite gravity gradiometry. All chapters are self-contained and can be studied individually, making the book an ideal resource for both graduate students and active researchers who want to acquaint themselves with the mathematical aspects of modern geodesy.


constructive approximation determination of the shape of the Earth gravitational field determination inference theory and geodetic networks inverse problems satellite methods

Editors and affiliations

  • Willi Freeden
    • 1
  • M. Zuhair Nashed
    • 2
  1. 1.Geomathematics GroupTU KaiserslauternKaiserslauternGermany
  2. 2.Department of MathematicsUniversity of Central FloridaOrlandoUSA

Bibliographic information