Structural, Syntactic, and Statistical Pattern Recognition

Joint IAPR International Workshop, S+SSPR 2016, Mérida, Mexico, November 29 - December 2, 2016, Proceedings

  • Antonio Robles-Kelly
  • Marco Loog
  • Battista Biggio
  • Francisco Escolano
  • Richard Wilson
Conference proceedings S+SSPR 2016

Part of the Lecture Notes in Computer Science book series (LNCS, volume 10029)

Also part of the Image Processing, Computer Vision, Pattern Recognition, and Graphics book sub series (LNIP, volume 10029)

Table of contents

  1. Front Matter
    Pages I-XIII
  2. Dimensionality Reduction, Manifold Learning and Embedding Methods

    1. Front Matter
      Pages 1-1
    2. Lixin Cui, Lu Bai, Yue Wang, Xiao Bai, Zhihong Zhang, Edwin R. Hancock
      Pages 3-14
    3. Hayato Itoh, Atsushi Imiya, Tomoya Sakai
      Pages 37-48
    4. Giorgia Minello, Andrea Torsello, Edwin R. Hancock
      Pages 49-59
  3. Dissimilarity Representations

    1. Front Matter
      Pages 61-61
    2. Bahram Lavi, Giorgio Fumera, Fabio Roli
      Pages 63-73
    3. David M. J. Tax, Veronika Cheplygina, Robert P. W. Duin, Jan van de Poll
      Pages 84-94
    4. Mara Chinea-Rios, Germán Sanchis-Trilles, Francisco Casacuberta
      Pages 95-106
  4. Graph-Theoretic Methods

    1. Front Matter
      Pages 119-119
    2. Xavier Cortés, Francesc Serratosa, Kaspar Riesen
      Pages 121-131
    3. Romain Deville, Elisa Fromont, Baptiste Jeudy, Christine Solnon
      Pages 132-142
    4. Joshua Lockhart, Giorgia Minello, Luca Rossi, Simone Severini, Andrea Torsello
      Pages 143-152
    5. Jianjia Wang, Richard C. Wilson, Edwin R. Hancock
      Pages 153-162
    6. Cheng Ye, Richard C. Wilson, Edwin R. Hancock
      Pages 163-173
    7. Furqan Aziz, Edwin R. Hancock, Richard C. Wilson
      Pages 174-184
    8. Francisco Escolano, Manuel Curado, Miguel A. Lozano, Edwin R. Hancook
      Pages 185-195
    9. Cheng Ye, Richard C. Wilson, Edwin R. Hancock
      Pages 196-206
    10. Pasi Fränti, Radu Mariescu-Istodor, Caiming Zhong
      Pages 207-217
    11. Jianjia Wang, Richard C. Wilson, Edwin R. Hancock
      Pages 218-228
  5. Model Selection, Classification and Clustering

    1. Front Matter
      Pages 229-229
    2. Hayato Itoh, Atsushi Imiya, Tomoya Sakai
      Pages 231-240
    3. Francisco Escolano, Manuel Curado, Edwin R. Hancock
      Pages 241-251
    4. Aidin Hassanzadeh, Arto Kaarna, Tuomo Kauranne
      Pages 252-262
    5. M. Denitto, L. Magri, A. Farinelli, A. Fusiello, M. Bicego
      Pages 274-284
    6. Pasi Fränti, Mohammad Rezaei
      Pages 285-296
  6. Semi and Fully Supervised Learning Methods

    1. Front Matter
      Pages 297-297
    2. Jesse H. Krijthe, Marco Loog
      Pages 299-309
    3. Ambra Demontis, Paolo Russu, Battista Biggio, Giorgio Fumera, Fabio Roli
      Pages 322-332
    4. Damien Fourure, Rémi Emonet, Elisa Fromont, Damien Muselet, Alain Trémeau, Christian Wolf
      Pages 333-343
    5. Guopeng Zhang, Massimo Piccardi
      Pages 344-354
  7. Shape Analysis

    1. Front Matter
      Pages 355-355
    2. Youssef El Rhabi, Loic Simon, Luc Brun, Josep Llados Canet, Felipe Lumbreras
      Pages 368-378
    3. Ralph Versteegen, Georgy Gimel’farb, Patricia Riddle
      Pages 379-389
    4. Carmine Sansone, Daniel Pucher, Nicole M. Artner, Walter G. Kropatsch, Alessia Saggese, Mario Vento
      Pages 390-400
    5. Najoua Rahal, Mohamed Benjlaiel, Adel M. Alimi
      Pages 401-411
    6. Aysylu Gabdulkhakova, Walter G. Kropatsch
      Pages 412-423
  8. Spatio-temporal Pattern Recognition

    1. Front Matter
      Pages 425-425
    2. Kevin Bascol, Rémi Emonet, Elisa Fromont, Jean-Marc Odobez
      Pages 427-438
    3. Radu Mariescu-Istodor, Pasi Fränti
      Pages 439-449
    4. Sami Sieranoja, Tomi Kinnunen, Pasi Fränti
      Pages 450-460
  9. Structural Matching

    1. Front Matter
      Pages 461-461
    2. Andrea Cucci, Pietro Lovato, Manuele Bicego
      Pages 463-473

About these proceedings


This book constitutes the proceedings of the Joint IAPR International Workshop on Structural Syntactic, and Statistical Pattern Recognition, S+SSPR 2016, consisting of the International Workshop on Structural and Syntactic Pattern Recognition SSPR, and the International Workshop on Statistical Techniques in Pattern Recognition, SPR. The 51 full papers presented were carefully reviewed and selected from 68 submissions. They are organized in the following topical sections: dimensionality reduction, manifold learning and embedding methods; dissimilarity representations; graph-theoretic methods; model selection, classification and clustering; semi and fully supervised learning methods; shape analysis; spatio-temporal pattern recognition; structural matching; text and document analysis. 


complex networks machine learning optimization semantic segmentation visualization artificial intelligence biometrics database query processing and optimization graph mining graph theory and discrete mathematics image classification infromation storage and retrieval information systems multi-label classification nonlinear embedding object tracking probabilistic inference problems programming techniques semi-supervised learning structural SV

Editors and affiliations

  • Antonio Robles-Kelly
    • 1
  • Marco Loog
    • 2
  • Battista Biggio
    • 3
  • Francisco Escolano
    • 4
  • Richard Wilson
    • 5
  1. 1.Data 61 - CSIRO CanberraAustralia
  2. 2.Pattern Recognition LaboratoryTechnical University of Delft Pattern Recognition LaboratoryCD DelftThe Netherlands
  3. 3.Electrical and Electronic EngineeringUniversity of Cagliari Electrical and Electronic EngineeringCagliariItaly
  4. 4.Computación e IAUniversidad de Alicante Computación e IAAlicanteSpain
  5. 5.Computer ScienceUniversity of York Computer ScienceYorkUnited Kingdom

Bibliographic information

Industry Sectors
Chemical Manufacturing
IT & Software
Consumer Packaged Goods
Materials & Steel
Finance, Business & Banking
Energy, Utilities & Environment
Oil, Gas & Geosciences