Algebraic Geometry and Number Theory

Summer School, Galatasaray University, Istanbul, 2014

  • Hussein Mourtada
  • Celal Cem Sarıoğlu
  • Christophe Soulé
  • Ayberk Zeytin

Part of the Progress in Mathematics book series (PM, volume 321)

Table of contents

  1. Front Matter
    Pages i-xi
  2. Kâzım Büyükboduk
    Pages 1-27
  3. İzzet Coşkun
    Pages 29-54
  4. Gerard Freixas i Montplet
    Pages 91-133
  5. Loring W. Tu
    Pages 135-160
  6. Zdzisław Wojtkowiak
    Pages 161-209
  7. Ayberk Zeytin
    Pages 211-232

About this book


This lecture notes volume presents significant contributions from the “Algebraic Geometry and Number Theory” Summer School, held at Galatasaray University, Istanbul, June 2-13, 2014.

It addresses subjects ranging from Arakelov geometry and Iwasawa theory to classical projective geometry, birational geometry and equivariant cohomology. Its main aim is to introduce these contemporary research topics to graduate students who plan to specialize in the area of algebraic geometry and/or number theory. All contributions combine main concepts and techniques with motivating examples and illustrative problems for the covered subjects. Naturally, the book will also be of interest to researchers working in algebraic geometry, number theory and related fields.


Arakelov geometry arithmetic intersection theory arithmetic Chow groups ample cone binary quadratic forms class number problems cubic three-folds Dirichlet L-series Galois L-functions Hilbert scheme of points

Editors and affiliations

  • Hussein Mourtada
    • 1
  • Celal Cem Sarıoğlu
    • 2
  • Christophe Soulé
    • 3
  • Ayberk Zeytin
    • 4
  1. 1.Institut de Mathématiques de JussieuUniversité Paris-DiderotFrance
  2. 2.Department of MathematicsDokuz Eylül UniversityBucaTurkey
  3. 3.Institut des Hautes Études Scientifiques Bures-sur-YvetteFrance
  4. 4.Department of MathematicsGalatasaray UniversityIstanbulTurkey

Bibliographic information

Industry Sectors
Finance, Business & Banking