Statistical Analysis of Proteomics, Metabolomics, and Lipidomics Data Using Mass Spectrometry

  • Susmita Datta
  • Bart J. A. Mertens

Part of the Frontiers in Probability and the Statistical Sciences book series (FROPROSTAS)

Table of contents

  1. Front Matter
    Pages i-viii
  2. Sebastian Gibb, Korbinian Strimmer
    Pages 101-124
  3. Shripad Sinari, Dobrin Nedelkov, Peter Reaven, Dean Billheimer
    Pages 141-155
  4. Yi Zhao, Tsung-Heng Tsai, Cristina Di Poto, Lewis K. Pannell, Mahlet G. Tadesse, Habtom W. Ressom
    Pages 157-176
  5. Bobbie-Jo M. Webb-Robertson, Thomas O. Metz, Katrina M. Waters, Qibin Zhang, Marian Rewers
    Pages 203-211
  6. J. A. Hageman, B. Engel, Ric C. H. de Vos, Roland Mumm, Robert D. Hall, H. Jwanro et al.
    Pages 239-257
  7. Mar Rodríguez-Girondo, Alexia Kakourou, Perttu Salo, Markus Perola, Wilma E. Mesker, Rob A. E. M. Tollenaar et al.
    Pages 259-275
  8. Bart J. A. Mertens, Susmita Datta, Thomas Hankemeier, Marian Beekman, Hae-Won Uh
    Pages 277-295

About this book


This book presents an overview of computational and statistical design and analysis of mass spectrometry-based proteomics, metabolomics, and lipidomics data. This contributed volume provides an introduction to the special aspects of statistical design and analysis with mass spectrometry data for the new omic sciences. The text discusses common aspects of design and analysis between and across all (or most) forms of mass spectrometry, while also providing special examples of application with the most common forms of mass spectrometry. Also covered are applications of computational mass spectrometry not only in clinical study but also in the interpretation of omics data in plant biology studies.

Omics research fields are expected to revolutionize biomolecular research by the ability to simultaneously profile many compounds within either patient blood, urine, tissue, or other biological samples. Mass spectrometry is one of the key analytical techniques used in these new omic sciences. Liquid chromatography mass spectrometry, time-of-flight data, and Fourier transform mass spectrometry are but a selection of the measurement platforms available to the modern analyst. Thus in practical proteomics or metabolomics,  researchers will not only be confronted with new high dimensional data types—as opposed to the familiar data structures in more classical genomics—but also with great variation between distinct types of mass spectral measurements derived from different platforms, which may complicate analyses, comparison, and interpretation of results.

Susmita Datta received her PhD in statistics from the University of Georgia. She is a tenured professor in the Department of Biostatistics at the University of Florida. Before joining the University of Florida she was a professor and a distinguished university scholar at the University of Louisville. She is a Fellow of the American Association for the Advancement of Science, American Statistical Association, and an elected member of the International Statistical Institute. She is past president of the Caucus for Women in Statistics, and she actively supports research and education for women in STEM fields.

Bart Mertens received his PhD in statistical sciences from University College London, Department of Statistical Sciences, on statistical analysis methods for spectrometry data. He is currently Associate Professor at the Department of Medical Statistics and Bioinformatics of the Leiden University Medical Centre, where he has been working in both research and consulting for statistical analysis methodology with mass spectrometry proteomic data for more than 10 years.


Bayesian analysis analytical chemistry biochemistry bioinformatics biomarker biostatistics computer science disease gene expression glycomics lipidomics mass spectrometry metabolite metabolomics omics protein proteomics statistical statistics

Editors and affiliations

  • Susmita Datta
    • 1
  • Bart J. A. Mertens
    • 2
  1. 1.Department of BiostatisticsUniversity of FloridaGainesvilleUSA
  2. 2.Department of Medical Statistics and BioinformaticsLeiden University Medical CentreRC LeidenThe Netherlands

Bibliographic information

Industry Sectors
Health & Hospitals
Finance, Business & Banking
Consumer Packaged Goods