© 2016

Search Techniques in Intelligent Classification Systems


  • Unifies theory and practice: from statistically optimal criteria to applications in image and speech recognition

  • Describes methodology of segment homogeneity testing to uniformly solve classification problems

  • Contains practical aspects of modern soft computing techniques to implement fast and accurate search in intelligent systems


Part of the SpringerBriefs in Optimization book series (BRIEFSOPTI)

Table of contents

  1. Front Matter
    Pages i-xiii
  2. Andrey V. Savchenko
    Pages 1-13
  3. Andrey V. Savchenko
    Pages 15-37
  4. Andrey V. Savchenko
    Pages 39-51
  5. Andrey V. Savchenko
    Pages 65-79
  6. Andrey V. Savchenko
    Pages 81-82

About this book


A unified methodology for categorizing various complex objects is presented in this book. Through probability theory, novel asymptotically minimax criteria suitable for practical applications in imaging and data analysis are examined including the special cases such as the Jensen-Shannon divergence and the probabilistic neural network. An optimal approximate nearest neighbor search algorithm, which allows faster classification of databases is featured. Rough set theory, sequential analysis and granular computing are used to improve performance of the hierarchical classifiers. Practical examples in face identification (including deep neural networks), isolated commands recognition in voice control system and classification of visemes captured by the Kinect depth camera are included. This approach creates fast and accurate search procedures by using exact probability densities of applied dissimilarity measures.

This book can be used as a guide for independent study and as supplementary material for a technically oriented graduate course in intelligent systems and data mining. Students and researchers interested in the theoretical and practical aspects of intelligent classification systems will find answers to:

- Why conventional implementation of the naive Bayesian approach does not work well in image classification?

- How to deal with insufficient performance of hierarchical classification systems?

- Is it possible to prevent an exhaustive search of the nearest neighbor in a database?


Modern intelligent systems Pattern Recognition data mining face identification probability theory speech recognition Intelligent Classification Systems Statistical Classification of Audiovisual Data Mathematical Model of the Piecewise-Regular Object Hierarchical Intelligent Classification Systems Voice Control Systems Nearest Neighbor Search

Authors and affiliations

  1. 1.National Res. Univ.;Higher schl of EconLab of Algor. & Techs. for Network AnalyNizhny NovgorodRussia

Bibliographic information

Industry Sectors
Finance, Business & Banking