© 2016

Modelling and Control of Dynamic Systems Using Gaussian Process Models


Part of the Advances in Industrial Control book series (AIC)

Table of contents

  1. Front Matter
    Pages i-xvi
  2. Juš Kocijan
    Pages 1-20
  3. Juš Kocijan
    Pages 21-102
  4. Juš Kocijan
    Pages 103-146
  5. Juš Kocijan
    Pages 147-208
  6. Juš Kocijan
    Pages 213-252
  7. Back Matter
    Pages 253-267

About this book


This monograph opens up new horizons for engineers and researchers in academia and in industry dealing with or interested in new developments in the field of system identification and control. It emphasizes guidelines for working solutions and practical advice for their implementation rather than the theoretical background of Gaussian process (GP) models. The book demonstrates the potential of this recent development in probabilistic machine-learning methods and gives the reader an intuitive understanding of the topic. The current state of the art is treated along with possible future directions for research.

Systems control design relies on mathematical models and these may be developed from measurement data. This process of system identification, when based on GP models, can play an integral part of control design in data-based control and its description as such is an essential aspect of the text. The background of GP regression is introduced first with system identification and incorporation of prior knowledge then leading into full-blown control. The book is illustrated by extensive use of examples, line drawings, and graphical presentation of computer-simulation results and plant measurements. The research results presented are applied in real-life case studies drawn from successful applications including:

  • a gas–liquid separator control;
  • urban-traffic signal modelling and reconstruction; and
  • prediction of atmospheric ozone concentration.

A MATLAB® toolbox, for identification and simulation of dynamic GP models is provided for download.

Advances in Industrial Control aims to report and encourage the transfer of technology in control engineering. The rapid development of control technology has an impact on all areas of the control discipline. The series offers an opportunity for researchers to present an extended exposition of new work in all aspects of industrial control.


Atmospheric Ozone Fault Detection Fault Diagnosis Gas–Liquid Separator Gaussian Process Model Hydraulic Plant Machine Learning Applications Process Control System Identification Urban Traffic Control

Authors and affiliations

  1. 1.Department of Systems and Control, Jožef Stefan Institute, Ljubljana, Slovenia and Centre for Systems and Information TechnologiesUniversity of Nova GoricaNova GoricaSlovenia

About the authors

Juš Kocijan is a senior research fellow at the Department of Systems and Control, Jozef Stefan Institute, the leading Slovenian research institute in the field of natural sciences and engineering, and a Professor of Electrical Engineering at the University of Nova Gorica, Slovenia. His past experience in the field of control engineering includes teaching and research at the University of Ljubljana and visiting research and teaching posts at several European universities and research institutes. He has been active in applied research in automatic control through numerous domestic and international research grants and projects, in a considerable number of which he acted as project leader. His research interests include the modelling of dynamic systems with Gaussian process models, control based on Gaussian process models, multiple-model approaches to modelling and control, applied nonlinear control, Individual Channel Analysis and Design. His other experience includes: serving as one of the editors of the Engineering Applications of Artificial Intelligence journal and on the editorial boards of other research journals, serving as a member of IFAC Technical committee on Computational Intelligence in Control, actively participating as a member of numerous scientific-meeting international programme and organising committees. Prof. Kocijan is a member of various national and international professional societies in the field of automatic control, modelling and simulation.

Bibliographic information

Industry Sectors
Chemical Manufacturing
IT & Software
Materials & Steel
Oil, Gas & Geosciences