Combinatorial Methods in Topology and Algebra

  • Bruno Benedetti
  • Emanuele Delucchi
  • Luca Moci

Part of the Springer INdAM Series book series (SINDAMS, volume 12)

Table of contents

  1. Front Matter
    Pages i-vii
  2. Bruno Benedetti, Emanuele Delucchi, Luca Moci
    Pages 1-4
  3. Part I

    1. Front Matter
      Pages 5-5
    2. Sylwia Antoniuk, Tomasz Łuczak, Jacek Świa̧tkowski
      Pages 15-18
    3. Fabrizio Caselli, Eric Marberg
      Pages 19-23
    4. Graham Denham, Alexander I. Suciu
      Pages 31-36
    5. Alex Fink, Luca Moci
      Pages 41-47
    6. Silke Horn
      Pages 53-57
    7. Jonathan Browder, Steven Klee
      Pages 63-68
    8. Grigoriy Blekherman, Sadik Iliman, Martina Juhnke-Kubitzke
      Pages 69-77
    9. Myrto Kallipoliti, Henri Mühle
      Pages 97-101
    10. Satoshi Murai
      Pages 103-106
    11. Eran Nevo
      Pages 107-114
    12. Isabella Novik
      Pages 115-119
    13. Sergio Caracciolo, Guglielmo Paoletti, Andrea Sportiello
      Pages 127-136
    14. Matteo Varbaro
      Pages 137-142
    15. Pavle V. M. Blagojević, Wolfgang Lück, Günter M. Ziegler
      Pages 149-153
  4. Part II

    1. Front Matter
      Pages 155-155
    2. Anders Björner
      Pages 157-171
    3. Filippo Callegaro, Giovanni Gaiffi
      Pages 173-201
    4. Alexandru Constantinescu, Matteo Varbaro
      Pages 203-227

About this book


Combinatorics plays a prominent role in contemporary mathematics, due to the vibrant development it has experienced in the last two decades and its many interactions with other subjects.

This book arises from the INdAM conference "CoMeTA 2013 - Combinatorial Methods in Topology and Algebra,'' which was held in Cortona in September 2013. The event brought together emerging and leading researchers at the crossroads of Combinatorics, Topology and Algebra, with a particular focus on new trends in subjects such as: hyperplane arrangements; discrete geometry and combinatorial topology; polytope theory and triangulations of manifolds; combinatorial algebraic geometry and commutative algebra; algebraic combinatorics; and combinatorial representation theory.

The book is divided into two parts. The first expands on the topics discussed at the conference by providing additional background and explanations, while the second presents original contributions on new trends in the topics addressed by the conference.


Algebraic Combinatorics Combinatorial algebraic geometry Combinatorial topology and commutative algebra Hyperplane arrangements and matroids Polytopes and triangulations

Editors and affiliations

  • Bruno Benedetti
    • 1
  • Emanuele Delucchi
    • 2
  • Luca Moci
    • 3
  1. 1.Department of MathematicsUniversity of MiamiCoral GablesUSA
  2. 2.Département de MathématiquesUniversité de FribourgFribourgSwitzerland
  3. 3.Université Paris-Diderot, IMJ-PRGParis 7France

Bibliographic information