© 2015

Software Engineering for Collective Autonomic Systems

The ASCENS Approach

  • Martin Wirsing
  • Matthias Hölzl
  • Nora Koch
  • Philip Mayer

Part of the Lecture Notes in Computer Science book series (LNCS, volume 8998)

Table of contents

  1. Front Matter
  2. Language and Verification for Collective Autonomic Systems

    1. Front Matter
      Pages 1-1
    2. Rocco De Nicola, Diego Latella, Alberto Lluch Lafuente, Michele Loreti, Andrea Margheri, Mieke Massink et al.
      Pages 3-71
    3. Roberto Bruni, Ugo Montanari, Matteo Sammartino
      Pages 73-106
    4. Jacques Combaz, Saddek Bensalem, Francesco Tiezzi, Andrea Margheri, Rosario Pugliese, Jan Kofroň
      Pages 107-159
  3. Modeling and Theory of Adaptive and Self-aware Systems

    1. Front Matter
      Pages 161-161
    2. Roberto Bruni, Andrea Corradini, Fabio Gadducci, Matthias Hölzl, Alberto Lluch Lafuente, Andrea Vandin et al.
      Pages 163-184
    3. Nicklas Hoch, Giacoma Valentina Monreale, Ugo Montanari, Matteo Sammartino, Alain Tcheukam Siwe
      Pages 185-220
    4. Emil Vassev, Mike Hinchey
      Pages 221-247
    5. Matthias Hölzl, Thomas Gabor
      Pages 249-290
    6. Lubomír Bulej, Tomáš Bureš, Ilias Gerostathopoulos, Vojtěch Horký, Jaroslav Keznikl, Lukáš Marek et al.
      Pages 291-322
  4. Engineering Techniques for Collective Autonomic Systems

    1. Front Matter
      Pages 323-323
    2. Matthias Hölzl, Nora Koch, Mariachiara Puviani, Martin Wirsing, Franco Zambonelli
      Pages 325-354
    3. Emil Vassev, Mike Hinchey
      Pages 379-403
    4. Tomáš Bureš, Ilias Gerostathopoulos, Petr Hnetynka, Jaroslav Keznikl, Michal Kit, Frantisek Plasil
      Pages 405-428
    5. Dhaminda B. Abeywickrama, Jacques Combaz, Vojtěch Horký, Jaroslav Keznikl, Jan Kofroň, Alberto Lluch Lafuente et al.
      Pages 429-448
  5. Case Studies: Challenges and Feedback

    1. Front Matter
      Pages 449-449
    2. Nikola Šerbedžija
      Pages 451-469
    3. Carlo Pinciroli, Michael Bonani, Francesco Mondada, Marco Dorigo
      Pages 471-494
    4. Philip Mayer, José Velasco, Annabelle Klarl, Rolf Hennicker, Mariachiara Puviani, Francesco Tiezzi et al.
      Pages 495-512
    5. Nicklas Hoch, Henry-Paul Bensler, Dhaminda Abeywickrama, Tomáš Bureš, Ugo Montanari
      Pages 513-533
  6. Back Matter

About this book


A collective autonomic system consists of collaborating autonomic entities which are able to adapt at runtime, adjusting to the state of the environment and incorporating new knowledge into their behavior. These highly dynamic systems are also known as ensembles. To ensure correct behavior of ensembles it is necessary to support their development through appropriate methods and tools which can guarantee that an autonomic system lives up to its intended purpose; this includes respecting important constraints of the environment. This State-of-the-Art Survey addresses the engineering of such systems by presenting the methods, tools and theories developed within the ASCENS project. ASCENS was an integrated project funded in the period 2010-2015 by the 7th Framework Programme (FP7) of the European Commission as part of the Future Emerging Technologies Proactive Initiative (FET Proactive). The 17 contributions included in this book are organized in four parts corresponding to the research areas of the project and their concrete applications: (I) language and verification for self-awareness and self-expression, (II) modeling and theory of self-aware and adaptive systems, (III) engineering techniques for collective autonomic systems, and last but not least, (IV) challenges and feedback provided by the case studies of the project in the areas of swarm robotics, cloud computing and e-mobility.


adaptive systems autonomic computing cloud computing constraint porgramming dynamic programming ensemble-oriented systems formal methods knowledge representation mobile robotics model-checking modeling optimization peer-to-peer computing performance programming lanuages real-life systems reinforcement learning self-organization swarm robotics verification

Editors and affiliations

  • Martin Wirsing
    • 1
  • Matthias Hölzl
    • 2
  • Nora Koch
    • 2
  • Philip Mayer
    • 2
  1. 1., Institut für InformatikLudwig-Maximilians-UniversitätMünchenGermany
  2. 2.Institut für InformatikLudwig-Maximilians-UniversitätMünchenGermany

Bibliographic information

Industry Sectors
Chemical Manufacturing
IT & Software
Consumer Packaged Goods
Finance, Business & Banking
Energy, Utilities & Environment