© 2015

Multimodal Pattern Recognition of Social Signals in Human-Computer-Interaction

Third IAPR TC3 Workshop, MPRSS 2014, Stockholm, Sweden, August 24, 2014, Revised Selected Papers

  • Friedhelm Schwenker
  • Stefan Scherer
  • Louis-Philippe Morency
Conference proceedings MPRSS 2014

Part of the Lecture Notes in Computer Science book series (LNCS, volume 8869)

Also part of the Lecture Notes in Artificial Intelligence book sub series (LNAI, volume 8869)

Table of contents

  1. Front Matter
    Pages I-VIII
  2. Algorithms

    1. Front Matter
      Pages 1-1
    2. Shinya Morioka, Tadashi Matsuo, Yasuhiro Hiramoto, Nobutaka Shimada, Yoshiaki Shirai
      Pages 3-14
    3. Lucas D. Terissi, Gonzalo D. Sad, Juan C. Gómez, Marianela Parodi
      Pages 43-53
    4. Gonzalo D. Sad, Lucas D. Terissi, Juan C. Gómez
      Pages 54-65
    5. Kamelia Aryafar, Ali Shokoufandeh
      Pages 66-73
  3. Applications

    1. Front Matter
      Pages 75-75
    2. Michael Glodek, Georg Layher, Felix Heilemann, Florian Gawrilowicz, Günther Palm, Friedhelm Schwenker et al.
      Pages 77-91
    3. Carmela Attolico, Grazia Cicirelli, Cataldo Guaragnella, Tiziana D’Orazio
      Pages 92-101
    4. Lamis Ghoualmi, Salim Chikhi, Amer Draa
      Pages 102-112
    5. Markus Kächele, Sascha Meudt, Andrej Schwarz, Friedhelm Schwenker
      Pages 113-122
    6. Nuno Figueiredo, Filipe Silva, Petia Georgieva, Mariofanna Milanova, Engin Mendi
      Pages 123-129
    7. Kamelia Aryafar, Jerry Soung
      Pages 141-144
  4. Back Matter
    Pages 145-145

About these proceedings


This book constitutes the thoroughly refereed post-workshop proceedings of the Third IAPR TC3 Workshop on Pattern Recognition of Social Signals in Human-Computer-Interaction, MPRSS 2014, held in Stockholm, Sweden, in August 2014, as a satellite event of the International Conference on Pattern Recognition, ICPR 2014. The 14 revised papers presented focus on pattern recognition, machine learning and information fusion methods with applications in social signal processing, including multimodal emotion recognition, user identification, and recognition of human activities.


Audio-visual speech features Classifier fusion Complementary models Cross-domain retrieval Discrete geometry Facial expression recognition Feature point detection Geometry embedding Graph transformations Human computer interaction Iris biometrics Lattice computations Local patches Manifold learning Multi modal data processing Multidimensional scaling Multimodal biometrics Person identification Speech recognition

Editors and affiliations

  • Friedhelm Schwenker
    • 1
  • Stefan Scherer
    • 2
  • Louis-Philippe Morency
    • 3
  1. 1.University of UlmUniversität UlmUlmGermany
  2. 2.University of Southern CaliforniaPlaya VistaUSA
  3. 3.University of Southern CaliforniaPlaya VistaUSA

Bibliographic information

Industry Sectors
Chemical Manufacturing
Health & Hospitals
IT & Software
Consumer Packaged Goods
Materials & Steel
Energy, Utilities & Environment
Oil, Gas & Geosciences