Stochastic Dynamics and Irreversibility

  • Tânia Tomé
  • Mário J. de Oliveira

Part of the Graduate Texts in Physics book series (GTP)

Table of contents

  1. Front Matter
    Pages i-xii
  2. Tânia Tomé, Mário J. de Oliveira
    Pages 1-22
  3. Tânia Tomé, Mário J. de Oliveira
    Pages 23-42
  4. Tânia Tomé, Mário J. de Oliveira
    Pages 43-71
  5. Tânia Tomé, Mário J. de Oliveira
    Pages 73-106
  6. Tânia Tomé, Mário J. de Oliveira
    Pages 107-128
  7. Tânia Tomé, Mário J. de Oliveira
    Pages 129-158
  8. Tânia Tomé, Mário J. de Oliveira
    Pages 159-186
  9. Tânia Tomé, Mário J. de Oliveira
    Pages 187-205
  10. Tânia Tomé, Mário J. de Oliveira
    Pages 207-228
  11. Tânia Tomé, Mário J. de Oliveira
    Pages 229-256
  12. Tânia Tomé, Mário J. de Oliveira
    Pages 257-272
  13. Tânia Tomé, Mário J. de Oliveira
    Pages 273-294
  14. Tânia Tomé, Mário J. de Oliveira
    Pages 295-317
  15. Tânia Tomé, Mário J. de Oliveira
    Pages 319-333
  16. Tânia Tomé, Mário J. de Oliveira
    Pages 335-350
  17. Tânia Tomé, Mário J. de Oliveira
    Pages 351-360
  18. Tânia Tomé, Mário J. de Oliveira
    Pages 361-368
  19. Tânia Tomé, Mário J. de Oliveira
    Pages 369-383
  20. Back Matter
    Pages 385-394

About this book

Introduction

This textbook presents an exposition of stochastic dynamics and irreversibility. It comprises the principles of probability theory and the stochastic dynamics in continuous spaces, described by Langevin and Fokker-Planck equations, and in discrete spaces, described by Markov chains and master equations. Special concern is given to the study of irreversibility, both in systems that evolve to equilibrium and in nonequilibrium stationary states. Attention is also given to the study of models displaying phase transitions and critical phenomema both in thermodynamic equilibrium and out of equilibrium.
These models include the linear Glauber model, the Glauber-Ising model, lattice models with absorbing states such as the contact process and those used in population dynamic and spreading of epidemic, probabilistic cellular automata, reaction-diffusion processes, random sequential adsorption and dynamic percolation. A stochastic approach to chemical reaction is also presented.The textbook is intended for students of physics and chemistry and for those interested in stochastic dynamics.
It provides, by means of examples and problems, a comprehensive and detailed explanation of the theory and its applications.

Keywords

Dynamic Percolation Glauber Model Irreversible System Physics Noise Induced Phenomena Nonequilibrium Thermodynamics Phase Transitions and Criticality Probabilistic Cellular Automaton Random Dynamical Systems Random Dynamical Systems Random Sequencial Adsorption Reaction-Diffusion Processes Systems with Inversion Symmetry Textbook Master Equation Textbook Phase Transitions

Authors and affiliations

  • Tânia Tomé
    • 1
  • Mário J. de Oliveira
    • 2
  1. 1.Institute of PhysicsUniversity of São PauloSão PauloBrazil
  2. 2.Institute of PhysicsUniversity of São PauloSão PauloBrazil

Bibliographic information

  • DOI https://doi.org/10.1007/978-3-319-11770-6
  • Copyright Information Springer International Publishing Switzerland 2015
  • Publisher Name Springer, Cham
  • eBook Packages Physics and Astronomy
  • Print ISBN 978-3-319-11769-0
  • Online ISBN 978-3-319-11770-6
  • Series Print ISSN 1868-4513
  • Series Online ISSN 1868-4521
  • About this book
Industry Sectors
Electronics
Aerospace
Automotive
Oil, Gas & Geosciences