Complex Plasmas

Scientific Challenges and Technological Opportunities

  • Michael Bonitz
  • Jose Lopez
  • Kurt Becker
  • Hauke Thomsen

Part of the Springer Series on Atomic, Optical, and Plasma Physics book series (SSAOPP, volume 82)

Table of contents

  1. Front Matter
    Pages i-xiii
  2. Dusty Plasmas

    1. Front Matter
      Pages 1-1
    2. Hauke Thomsen, Jan Schablinski, Michael Bonitz
      Pages 3-49
    3. André Schella, André Melzer, Patrick Ludwig, Hauke Thomsen, Michael Bonitz
      Pages 51-71
    4. Patrick Ludwig, Christopher Arran, Michael Bonitz
      Pages 73-99
  3. Quantum Plasmas

    1. Front Matter
      Pages 101-101
    2. Shabbir A. Khan, Michael Bonitz
      Pages 103-152
    3. Tim Schoof, Simon Groth, Michael Bonitz
      Pages 153-194
  4. Low-Temperature Plasmas

    1. Front Matter
      Pages 195-195
    2. Sven Bornholdt, Maik Fröhlich, Holger Kersten
      Pages 197-234
    3. J. Röpcke, P. B. Davies, J. H. van Helden, M. Hübner, N. Lang, S. Welzel
      Pages 235-266
    4. Rafael Leslie Heinisch, Franz Xaver Bronold, Holger Fehske
      Pages 267-298
    5. Lasse Rosenthal, Thomas Strunskus, Franz Faupel, Jan Willem Abraham, Michael Bonitz
      Pages 321-370
  5. Technological Applications

    1. Front Matter
      Pages 371-371
    2. WeiDong Zhu, Kurt Becker, Jie Pan, Jue Zhang, Jing Fang
      Pages 455-485
  6. Back Matter
    Pages 487-491

About this book


This book provides the reader with an introduction to the physics of complex plasmas, a discussion of the specific scientific and technical challenges they present, and an overview of their potential technological applications.

Complex plasmas differ from conventional high-temperature plasmas in several ways: they may contain additional species, including nanometer- to micrometer-sized particles, negative ions, molecules and radicals, and they may exhibit strong correlations or quantum effects. This book introduces the classical and quantum mechanical approaches used to describe and simulate complex plasmas. It also covers some key experimental techniques used in the analysis of these plasmas, including calorimetric probe methods, IR absorption techniques and X-ray absorption spectroscopy.

The final part of the book reviews the emerging applications of microcavity and microchannel plasmas, the synthesis and assembly of nanomaterials through plasma electrochemistry, the large-scale generation of ozone using microplasmas, and novel applications of atmospheric-pressure non-thermal plasmas in dentistry.

Going beyond the scope of traditional plasma texts, the presentation is very well suited for senior undergraduate, graduate students and postdoctoral researchers specializing in plasma physics.


Complex Plasmas Dental Applications Dusty Plasmas Low Temperature Plasmas Microcavity Plasmas Microchannel Plasmas Microplasmas Molecular Plasmas Ozone Generation Path Integral Montel Carlo Phase Transitions Plasma Electrochemistry Quantum Hydrodynamics Quantum Plasmas Streaming Plasmas Technological Applications of Plasmas

Editors and affiliations

  • Michael Bonitz
    • 1
  • Jose Lopez
    • 2
  • Kurt Becker
    • 3
  • Hauke Thomsen
    • 4
  1. 1.Astrophysik Lehrstuhl Statistische PhysikChristian-Albrechts-Universität zu Kiel Institut für Theoretische Physik undKielGermany
  2. 2.Seton Hall UniversitySouth OrangeUSA
  3. 3.Polytechnic Institute of New York UniversityBrooklynUSA
  4. 4.Institut für Theoretische Physik und AstrophysikChristian-Albrechts-Universität zu KielKielGermany

Bibliographic information

Industry Sectors
Energy, Utilities & Environment