© 2014

Information-Theoretic Evaluation for Computational Biomedical Ontologies


Part of the SpringerBriefs in Computer Science book series (BRIEFSCOMPUTER)

Table of contents

  1. Front Matter
    Pages i-vii
  2. Wyatt Travis Clark
    Pages 1-11
  3. Wyatt Travis Clark
    Pages 13-28
  4. Wyatt Travis Clark
    Pages 29-41
  5. Wyatt Travis Clark
    Pages 43-44
  6. Back Matter
    Pages 45-46

About this book


The development of effective methods for the prediction of ontological annotations is an important goal in computational biology, yet evaluating their performance is difficult due to problems caused by the structure of biomedical ontologies and incomplete annotations of genes. This work proposes an information-theoretic framework to evaluate the performance of computational protein function prediction. A Bayesian network is used, structured according to the underlying ontology, to model the prior probability of a protein's function. The concepts of misinformation and remaining uncertainty are then defined, that can be seen as analogs of precision and recall. Finally, semantic distance is proposed as a single statistic for ranking classification models. The approach is evaluated by analyzing three protein function predictors of gene ontology terms. The work addresses several weaknesses of current metrics, and provides valuable insights into the performance of protein function prediction tools.


Algorithm Development Information Theory Ontology Protein Function Prediction Semantic Evaluation

Authors and affiliations

  1. 1.Department Molecular Biophysics & BiochemistryYale UniversityNew HavenUSA

Bibliographic information

Industry Sectors