© 2014

Spatial Temporal Patterns for Action-Oriented Perception in Roving Robots II

An Insect Brain Computational Model

  • Paolo Arena
  • Luca Patanè

Part of the Cognitive Systems Monographs book series (COSMOS, volume 21)

Table of contents

  1. Front Matter
    Pages i-xiv
  2. Models of the Insect Brain: From Neurobiology to Computational Intelligence

    1. Front Matter
      Pages 1-1
    2. P. Arena, L. Patanè, P. S. Termini
      Pages 43-80
  3. Complex Dynamics for Internal Representation and Locomotion Control

    1. Front Matter
      Pages 81-81
    2. J. A. Villacorta-Atienza, M. G. Velarde, V. A. Makarov
      Pages 83-100
    3. E. Arena, P. Arena, L. Patanè
      Pages 101-122
  4. Software/Hardware Cognitive Architectures

    1. Front Matter
      Pages 151-151
    2. P. Arena, L. Patanè, A. Vitanza
      Pages 153-176
    3. I. Aleo, P. Arena, S. De Fiore, L. Patanè, M. Pollino, C. Ventura
      Pages 177-216
    4. D. J. Caballero-Garcia, A. Jimenez-Marrufo
      Pages 249-316
  5. Scenarios and Experiments

    1. Front Matter
      Pages 317-317
    2. P. Arena, L. Patanè
      Pages 319-329
    3. P. Arena, S. De Fiore, L. Patanè, P. S. Termini, A. Vitanza
      Pages 331-371

About this book


This book presents the result of a joint effort from different European Institutions within the framework of the EU funded project called SPARK II, devoted to device an insect brain computational model, useful to be embedded into autonomous robotic agents. 

Part I reports the biological background on Drosophila melanogaster with particular attention to the main centers which are used as building blocks for the implementation of the insect brain computational model. 

Part II  reports the mathematical approach to model the Central Pattern Generator used for the gait generation in a six-legged robot. Also the Reaction-diffusion principles in non-linear lattices are exploited to develop a compact internal representation of a dynamically changing environment for behavioral planning.

In Part III  a software/hardware framework, developed to integrate the insect brain computational model in a simulated/real robotic platform, is illustrated. The different robots used for the experiments are also described.  Moreover the problems related to the vision system were addressed proposing robust solutions for object identification and feature extraction.

Part IV includes the relevant scenarios used in the experiments to test the capabilities of the insect brain-inspired architecture taking as comparison the biological case. Experimental results are finally reported,  whose multimedia can be found in the SPARK II web page:


Action-Oriented Perception Biorobotics Cognitive Systems Insect Brain Computational Model Roving Robots Spatial Temporal Patterns Spiking Networks

Editors and affiliations

  • Paolo Arena
    • 1
  • Luca Patanè
    • 2
  1. 1.Dipartimento di Ingegneria Elettrica Elettronica e dei SistemiUniversità di CataniaCataniaItaly
  2. 2.Dipartimento di Ingegneria Elettrica Elettronica e dei SistemiUniversità di CataniaCataniaItaly

Bibliographic information

  • Book Title Spatial Temporal Patterns for Action-Oriented Perception in Roving Robots II
  • Book Subtitle An Insect Brain Computational Model
  • Editors Paolo Arena
    Luca Patanè
  • Series Title Cognitive Systems Monographs
  • Series Abbreviated Title Cognitive Systems Monogr.
  • DOI
  • Copyright Information Springer International Publishing Switzerland 2014
  • Publisher Name Springer, Cham
  • eBook Packages Engineering Engineering (R0)
  • Hardcover ISBN 978-3-319-02361-8
  • Softcover ISBN 978-3-319-34695-3
  • eBook ISBN 978-3-319-02362-5
  • Series ISSN 1867-4925
  • Series E-ISSN 1867-4933
  • Edition Number 1
  • Number of Pages XIV, 371
  • Number of Illustrations 51 b/w illustrations, 205 illustrations in colour
  • Topics Robotics and Automation
    Computational Intelligence
    Computational Biology/Bioinformatics
  • Buy this book on publisher's site
Industry Sectors
Chemical Manufacturing
IT & Software
Energy, Utilities & Environment
Oil, Gas & Geosciences