Advertisement

Advanced Physics of Electron Transport in Semiconductors and Nanostructures

  • Massimo V. Fischetti
  • William G. Vandenberghe

Part of the Graduate Texts in Physics book series (GTP)

Table of contents

  1. Front Matter
    Pages i-xxiii
  2. A Brief Review of Classical and Quantum Mechanics

    1. Front Matter
      Pages 1-1
    2. Massimo V. Fischetti, William G. Vandenberghe
      Pages 3-20
    3. Massimo V. Fischetti, William G. Vandenberghe
      Pages 21-36
  3. Crystals and Electronic Properties of Solids

    1. Front Matter
      Pages 37-37
    2. Massimo V. Fischetti, William G. Vandenberghe
      Pages 39-55
    3. Massimo V. Fischetti, William G. Vandenberghe
      Pages 57-69
    4. Massimo V. Fischetti, William G. Vandenberghe
      Pages 71-97
    5. Massimo V. Fischetti, William G. Vandenberghe
      Pages 99-110
    6. Massimo V. Fischetti, William G. Vandenberghe
      Pages 111-162
    7. Massimo V. Fischetti, William G. Vandenberghe
      Pages 163-183
  4. Elementary Excitations, Statistical Mechanics, and Dielectric Response

    1. Front Matter
      Pages 185-185
    2. Massimo V. Fischetti, William G. Vandenberghe
      Pages 187-214
    3. Massimo V. Fischetti, William G. Vandenberghe
      Pages 215-221
    4. Massimo V. Fischetti, William G. Vandenberghe
      Pages 223-251
  5. Electron Scattering in Solids

    1. Front Matter
      Pages 253-253
    2. Massimo V. Fischetti, William G. Vandenberghe
      Pages 255-268
    3. Massimo V. Fischetti, William G. Vandenberghe
      Pages 269-314
    4. Massimo V. Fischetti, William G. Vandenberghe
      Pages 315-325
    5. Massimo V. Fischetti, William G. Vandenberghe
      Pages 327-349
    6. Massimo V. Fischetti, William G. Vandenberghe
      Pages 351-357
  6. Electronic Transport

    1. Front Matter
      Pages 359-359
    2. Massimo V. Fischetti, William G. Vandenberghe
      Pages 361-380
    3. Massimo V. Fischetti, William G. Vandenberghe
      Pages 381-406
    4. Massimo V. Fischetti, William G. Vandenberghe
      Pages 407-436
  7. Back Matter
    Pages 437-474

About this book

Introduction

This textbook is aimed at second-year graduate students in Physics, Electrical Engineer­ing, or Materials Science. It presents a rigorous introduction to electronic transport in solids, especially at the nanometer scale.
Understanding electronic transport in solids requires some basic knowledge of Ham­iltonian Classical Mechanics, Quantum Mechanics, Condensed Matter Theory, and Statistical Mechanics. Hence, this book discusses those sub-topics which are required to deal with electronic transport in a single, self-contained course. This will be useful for students who intend to work in academia or the nano/ micro-electronics industry.
Further topics covered include: the theory of energy bands in crystals, of second quan­tization and elementary excitations in solids, of the dielectric properties of semicon­ductors with an emphasis on dielectric screening and coupled interfacial modes, of electron scattering with phonons, plasmons, electrons and photons, of the derivation of transport equations in semiconductors and semiconductor nanostructures somewhat at the quantum level, but mainly at the semi-classical level. The text presents examples relevant to current research, thus not only about Si, but also about III-V compound semiconductors, nanowires, graphene and graphene nanoribbons. In particular, the text gives major emphasis to plane-wave methods applied to the electronic structure of solids, both DFT and empirical pseudopotentials, always paying attention to their effects on electronic transport and its numerical treatment. The core of the text is electronic transport, with ample discussions of the transport equations derived both in the quantum picture (the Liouville-von Neumann equation) and semi-classically (the Boltzmann transport equation, BTE). An advanced chapter, Chapter 18, is strictly related to the ‘tricky’ transition from the time-reversible Liouville-von Neumann equation to the time-irreversible Green’s functions, to the density-matrix formalism and, classically, to the Boltzmann transport equation. Finally, several methods for solving the BTE are also reviewed, including the method of moments, iterative methods, direct matrix inversion, Cellular Automata and Monte Carlo. Four appendices complete the text.

Keywords

Alternative Interpretations of Quantum Mechanics Carbon-based Nanostructures Electronic Transport in Solids Mechanics Nano-electronics Semiconductor Nanostructures Semiconductor Physics Solid-state Electronics Special Relativity for Electromagnetic Coupling

Authors and affiliations

  • Massimo V. Fischetti
    • 1
  • William G. Vandenberghe
    • 2
  1. 1.Dept of Materials Sci & EnggrUniversity of Texas at DallasRichadsonUSA
  2. 2.Dept. of Materials Sci. and EngineeringUniversity of Texas at DallasRICHARDSONUSA

Bibliographic information

  • DOI https://doi.org/10.1007/978-3-319-01101-1
  • Copyright Information Springer International Publishing Switzerland 2016
  • Publisher Name Springer, Cham
  • eBook Packages Physics and Astronomy
  • Print ISBN 978-3-319-01100-4
  • Online ISBN 978-3-319-01101-1
  • Series Print ISSN 1868-4513
  • Series Online ISSN 1868-4521
  • Buy this book on publisher's site
Industry Sectors
Materials & Steel
Electronics
Telecommunications