Advertisement

Pisot and Salem Numbers

  • M. J. Bertin
  • A. Decomps-Guilloux
  • M. Grandet-Hugot
  • M. Pathiaux-Delefosse
  • J. P. Schreiber

Table of contents

  1. Front Matter
    Pages i-xiii
  2. M. J. Bertin, A. Decomps-Guilloux, M. Grandet-Hugot, M. Pathiaux-Delefosse, J. P. Schreiber
    Pages 1-18
  3. M. J. Bertin, A. Decomps-Guilloux, M. Grandet-Hugot, M. Pathiaux-Delefosse, J. P. Schreiber
    Pages 19-25
  4. M. J. Bertin, A. Decomps-Guilloux, M. Grandet-Hugot, M. Pathiaux-Delefosse, J. P. Schreiber
    Pages 27-60
  5. M. J. Bertin, A. Decomps-Guilloux, M. Grandet-Hugot, M. Pathiaux-Delefosse, J. P. Schreiber
    Pages 61-75
  6. M. J. Bertin, A. Decomps-Guilloux, M. Grandet-Hugot, M. Pathiaux-Delefosse, J. P. Schreiber
    Pages 77-99
  7. M. J. Bertin, A. Decomps-Guilloux, M. Grandet-Hugot, M. Pathiaux-Delefosse, J. P. Schreiber
    Pages 101-117
  8. M. J. Bertin, A. Decomps-Guilloux, M. Grandet-Hugot, M. Pathiaux-Delefosse, J. P. Schreiber
    Pages 119-151
  9. M. J. Bertin, A. Decomps-Guilloux, M. Grandet-Hugot, M. Pathiaux-Delefosse, J. P. Schreiber
    Pages 153-168
  10. M. J. Bertin, A. Decomps-Guilloux, M. Grandet-Hugot, M. Pathiaux-Delefosse, J. P. Schreiber
    Pages 169-176
  11. M. J. Bertin, A. Decomps-Guilloux, M. Grandet-Hugot, M. Pathiaux-Delefosse, J. P. Schreiber
    Pages 177-188
  12. M. J. Bertin, A. Decomps-Guilloux, M. Grandet-Hugot, M. Pathiaux-Delefosse, J. P. Schreiber
    Pages 189-218
  13. M. J. Bertin, A. Decomps-Guilloux, M. Grandet-Hugot, M. Pathiaux-Delefosse, J. P. Schreiber
    Pages 219-228
  14. M. J. Bertin, A. Decomps-Guilloux, M. Grandet-Hugot, M. Pathiaux-Delefosse, J. P. Schreiber
    Pages 229-260
  15. M. J. Bertin, A. Decomps-Guilloux, M. Grandet-Hugot, M. Pathiaux-Delefosse, J. P. Schreiber
    Pages 261-270
  16. M. J. Bertin, A. Decomps-Guilloux, M. Grandet-Hugot, M. Pathiaux-Delefosse, J. P. Schreiber
    Pages 271-291

About this book

Introduction

the attention of The publication of Charles Pisot's thesis in 1938 brought to the mathematical community those marvelous numbers now known as the Pisot numbers (or the Pisot-Vijayaraghavan numbers). Although these numbers had been discovered earlier by A. Thue and then by G. H. Hardy, it was Pisot's result in that paper of 1938 that provided the link to harmonic analysis, as discovered by Raphael Salem and described in a series of papers in the 1940s. In one of these papers, Salem introduced the related class of numbers, now universally known as the Salem numbers. These two sets of algebraic numbers are distinguished by some striking arith­ metic properties that account for their appearance in many diverse areas of mathematics: harmonic analysis, ergodic theory, dynamical systems and alge­ braic groups. Until now, the best known and most accessible introduction to these num­ bers has been the beautiful little monograph of Salem, Algebraic Numbers and Fourier Analysis, first published in 1963. Since the publication of Salem's book, however, there has been much progress in the study of these numbers. Pisot had long expressed the desire to publish an up-to-date account of this work, but his death in 1984 left this task unfulfilled.

Keywords

Mathematica algebra calculus ergodic theory mathematics

Authors and affiliations

  • M. J. Bertin
    • 1
  • A. Decomps-Guilloux
    • 1
  • M. Grandet-Hugot
    • 2
  • M. Pathiaux-Delefosse
    • 1
  • J. P. Schreiber
    • 3
  1. 1.Université Pierre et Marie Curie MathématiquesParis Cedex 05France
  2. 2.Université de Caen MathématiquesCaen CedexFrance
  3. 3.Château de la SourceUniversité d’OrléansOrléans CedexFrance

Bibliographic information

Industry Sectors
Finance, Business & Banking
Electronics
Aerospace