Advertisement

Group Rings and Class Groups

  • Klaus W. Roggenkamp
  • Martin J. Taylor
Book

Part of the DMV Seminar book series (OWS, volume 18)

Table of contents

  1. Front Matter
    Pages i-v
  2. DMV-Seminar Part 1 Group Rings: Units and the Isomorphism Problem

    1. Front Matter
      Pages 1-4
    2. Klaus W. Roggenkamp, Martin J. Taylor
      Pages 5-6
    3. Klaus W. Roggenkamp, Martin J. Taylor
      Pages 7-9
    4. Klaus W. Roggenkamp, Martin J. Taylor
      Pages 9-14
    5. Klaus W. Roggenkamp, Martin J. Taylor
      Pages 15-20
    6. Klaus W. Roggenkamp, Martin J. Taylor
      Pages 21-26
    7. W. Kimmerle
      Pages 27-37
    8. Klaus W. Roggenkamp, Martin J. Taylor
      Pages 38-59
    9. Klaus W. Roggenkamp, Martin J. Taylor
      Pages 60-73
    10. Klaus W. Roggenkamp, Martin J. Taylor
      Pages 74-81
    11. Klaus W. Roggenkamp, Martin J. Taylor
      Pages 82-90
    12. W. Kimmerle
      Pages 91-103
    13. Alexander Zimmermann
      Pages 104-116
    14. W. Kimmerle
      Pages 117-124
    15. Klaus W. Roggenkamp, Martin J. Taylor
      Pages 125-140
    16. Klaus W. Roggenkamp, Martin J. Taylor
      Pages 141-143
    17. Back Matter
      Pages 144-152
  3. DMV-Seminar Part 2 Hopf Orders and Galois Module Structure

    1. Front Matter
      Pages 153-154
    2. Klaus W. Roggenkamp, Martin J. Taylor
      Pages 155-160
    3. Klaus W. Roggenkamp, Martin J. Taylor
      Pages 161-178
    4. Klaus W. Roggenkamp, Martin J. Taylor
      Pages 179-193
    5. Klaus W. Roggenkamp, Martin J. Taylor
      Pages 194-201
    6. Klaus W. Roggenkamp, Martin J. Taylor
      Pages 202-208
  4. Back Matter
    Pages 209-210

About this book

Keywords

Algebra Arithmetic Finite Morphism Representation theory proof theorem

Authors and affiliations

  • Klaus W. Roggenkamp
    • 1
  • Martin J. Taylor
    • 2
  1. 1.Mathematisches Institut BUniversität StuttgartStuttgart 80Germany
  2. 2.Dept. of Mathematics U.M.I.S.T.ManchesterEngland

Bibliographic information