Hyperbolic Problems: Theory, Numerics, Applications

Eighth International Conference in Magdeburg, February/March 2000 Volume II

  • Heinrich Freistühler
  • Gerald Warnecke
Conference proceedings

Part of the ISNM International Series of Numerical Mathematics book series (ISNM, volume 141)

Table of contents

  1. Front Matter
    Pages i-xii
  2. Christiane Helling, Rupert Klein, Marcus Lüttke, Erwin Sedlmayr
    Pages 515-524
  3. Karel Kozel, Michal Janda, Richard Liska
    Pages 563-572
  4. Shuichi Kawashima, Shinya Nishibata
    Pages 593-602
  5. Friedemann Kemm, Claus-Dieter Munz, Rudolf Schneider, Eric Sonnendrücker
    Pages 603-612
  6. Gunilla Kreiss, Mattias Liefvendahl
    Pages 613-621
  7. Richard Liska, Burton Wendroff
    Pages 673-682
  8. Dan Marchesin, Jesus da Mota, Aparecido de Souza
    Pages 683-692
  9. Andreas Meister, Christof Vömel
    Pages 703-712
  10. Jean-Marc Mercier, Benedetto Piccoli
    Pages 713-722
  11. R. C. Millington, V. A. Titarev, E. F. Toro
    Pages 723-732
  12. Claus-Dieter Munz, Pascal Omnes, Rudolf Schneider
    Pages 755-764
  13. Roberto Natalini, Shaoqiang Tang
    Pages 765-774
  14. Sebastian Noelle, Wolfram Rosenbaum, Martin Rumpf
    Pages 775-784
  15. Giovanni Russo
    Pages 821-829
  16. J. A. Smoller, J. B. Temple
    Pages 861-862
  17. F. G. Tcheremissine
    Pages 883-890
  18. Wen-An Yong
    Pages 921-929
  19. Robin Young
    Pages 931-939
  20. Back Matter
    Pages 941-946

About these proceedings


Hyperbolic partial differential equations describe phenomena of material or wave transport in physics, biology and engineering, especially in the field of fluid mechanics. The mathematical theory of hyperbolic equations has recently made considerable progress. Accurate and efficient numerical schemes for computation have been and are being further developed.

This two-volume set of conference proceedings contains about 100 refereed and carefully selected papers. The books are intended for researchers and graduate students in mathematics, science and engineering interested in the most recent results in theory and practice of hyperbolic problems.

Applications touched in these proceedings concern one-phase and multiphase fluid flow, phase transitions, shallow water dynamics, elasticity, extended thermodynamics, electromagnetism, classical and relativistic magnetohydrodynamics, cosmology. Contributions to the abstract theory of hyperbolic systems deal with viscous and relaxation approximations, front tracking and wellposedness, stability of shock profiles and multi-shock patterns, traveling fronts for transport equations. Numerically oriented articles study finite difference, finite volume, and finite element schemes, adaptive, multiresolution, and artificial dissipation methods.


Dissipation Magnetohydrodynamics Profil fluid mechanics hyperbolic equation hyperbolic partial differential equation numerics

Editors and affiliations

  • Heinrich Freistühler
    • 1
  • Gerald Warnecke
    • 2
  1. 1.Max Planck Institute for Mathematics in the SciencesLeipzigGermany
  2. 2.Institute of Analysis and Numerical MathematicsOtto-von-Guericke-UniversityMagdeburgGermany

Bibliographic information

Industry Sectors
Energy, Utilities & Environment