Advertisement

Nonlinear Evolution Equations and Related Topics

Dedicated to Philippe Bénilan

  • Wolfgang Arendt
  • Haïm Brézis
  • Michel Pierre

Table of contents

  1. Front Matter
    Pages i-xiii
  2. Wolfgang Arendt, Haïm Brézis, Michel Pierre
    Pages 1-9
  3. Francis Hirsch
    Pages 11-25
  4. F. Andreu, V. Caselles, J. M. Mazón
    Pages 39-65
  5. Wolfgang Arendt, Mahamadi Warma
    Pages 119-135
  6. S. B. Angenent, D. G. Aronson
    Pages 137-151
  7. P. Bénilan, L. C. Evans, R. F. Gariepy
    Pages 203-214
  8. Noureddine Igbida, Philippe Benilan
    Pages 215-224
  9. Emilia Bazhlekova, Philippe Clément
    Pages 237-246
  10. Volker G. Jakubowski, Petra Wittbold
    Pages 303-319
  11. Jin Liang, Rainer Nagel, Ti-Jun Xiao
    Pages 321-331
  12. Horst Heck, Matthias Hieber
    Pages 332-359
  13. Lucio Boccardo, Luigi Orsina, Alessio Porretta
    Pages 407-418
  14. Alain Haraux, Mohamed Ali Jendoubi, Otared Kavian
    Pages 463-484
  15. Ciprian G. Gal, Gisèle Ruiz Goldstein, Jerome A. Goldstein
    Pages 623-635
  16. Michael G. Crandall, Pei-Yong Wang
    Pages 653-672
  17. Philippe Bénilan, Haïm Brezis
    Pages 673-770
  18. Boris P. Andreianov, Fouzia Bouhsiss
    Pages S273-S295

About this book

Introduction

Philippe Bénilan was a most original and charismatic mathematician who had a deep and decisive impact on the theory of nonlinear evolution equations. The present volume is dedicated to him and contains research papers written by highly distinguished mathematicians. They are all related to Bénilan's work and reflect the present state of this most active field. The contributions cover a wide range of nonlinear and linear equations. Special topics are Hamilton-Jacobi equations, the porous medium equation, reaction diffusion systems, integro-differential equations and visco-elasticity, maximal regularity for elliptic and parabolic equations, and the Ornstein-Uhlenbeck operator.

Also in this volume, the legendary work of Bénilan-Brézis on Thomas-Fermi theory is published for the first time.

 

Keywords

Boundary value problem Evolution equations Partial differential equations acoustic wave equation hyperbolic equation partial differential equation wave equation

Editors and affiliations

  • Wolfgang Arendt
    • 1
  • Haïm Brézis
    • 2
    • 3
  • Michel Pierre
    • 4
  1. 1.Department of Applied AnalysisUniversity of UlmUlmGermany
  2. 2.Analyse NumériqueUniversité Pierre et Marie Curie, B.C. 187Paris Cedex 05France
  3. 3.Department of Mathematics Hill Center, Busch CampusRutgers UniversityPiscatawayUSA
  4. 4.Campus de Ker LannAntenne de Bretagne de l’ENS CachanBruzFrance

Bibliographic information