Free Boundary Problems

Theory and Applications

  • Pierluigi Colli
  • Claudio Verdi
  • Augusto Visintin
Conference proceedings

Part of the ISNM International Series of Numerical Mathematics book series (ISNM, volume 147)

Table of contents

  1. Front Matter
    Pages i-viii
  2. Grégoire Allaire, François Jouve, Anca-Maria Toader
    Pages 1-15
  3. Luigi Ambrosio, Simon Masnou
    Pages 17-26
  4. Daniele Andreucci, Giovanni Caruso, Emmanuele DiBenedetto
    Pages 27-51
  5. Eberhard Bänsch, Pedro Morin, Ricardo H. Nochetto
    Pages 53-63
  6. Vincenzo Capasso, Ramon Escobedo, Claudia Salani
    Pages 75-86
  7. Pierre Degond, Céline Parzani, Marie-Hélène Vignal
    Pages 103-112
  8. Joachim Escher, Kazuo Ito
    Pages 131-138
  9. Antonio Fasano, Alberto Mancini, Riccardo Ricci
    Pages 139-149
  10. Takesi Fukao, Nobuyuki Kenmochi, Irena Pawlow
    Pages 151-165
  11. Martin E. Glicksman, Afina Lupulescu, Matthew B. Koss
    Pages 167-175
  12. Reiner Henseler, Barbara Niethammer, Felix Otto
    Pages 177-187
  13. Danielle Hilhorst, Masayasu Mimura, Rémi Weidenfeld
    Pages 189-196
  14. Alessandra Micheletti, Vincenzo Capasso
    Pages 197-205
  15. Ricardo H. Nochetto
    Pages 207-223
  16. Matteo Novaga
    Pages 225-236
  17. Oliver Penrose, J. W. Cahn
    Pages 237-254
  18. Mario Primicerio, Boris Zaltzman
    Pages 255-264
  19. Andrés Solé, Vicent Caselles, Guillermo Sapiro, Francisco Arándiga
    Pages 303-312
  20. Back Matter
    Pages 343-347

About these proceedings


Many phenomena of interest for applications are represented by differential equations which are defined in a domain whose boundary is a priori unknown, and is accordingly named a "free boundary". A further quantitative condition is then provided in order to exclude indeterminacy. Free boundary problems thus encompass a broad spectrum which is represented in this state-of-the-art volume by a variety of contributions of researchers in mathematics and applied fields like physics, biology and material sciences. Special emphasis has been reserved for mathematical modelling and for the formulation of new problems.


Partial differential equations differential equation finite element method numerical analysis partial differential equation

Editors and affiliations

  • Pierluigi Colli
    • 1
  • Claudio Verdi
    • 2
  • Augusto Visintin
    • 3
  1. 1.Dipartimento di MatematicaUniversità di PaviaPaviaItaly
  2. 2.Dipartimento di MatematicaUniversità di MilanoMilanoItaly
  3. 3.Dipartimento di MatematicaPovo di TrentoItaly

Bibliographic information

Industry Sectors
Finance, Business & Banking
Energy, Utilities & Environment