Computational Earthquake Science Part II

  • Andrea Donnellan
  • Peter Mora
  • Mitsuhiro Matsu’ura
  • Xiang-chu Yin

Part of the PAGEOPH Topical Volumes book series (PTV)

Table of contents

  1. Front Matter
    Pages i-vii
  2. Computational Earthquake Science PART II

    1. Andrea Donnellan, Peter Mora, Mitsuhiro Matsu’ura, Xiang-Chu Yin
      Pages 2119-2122
  3. Dynamic Rupture and Wave Propagation

    1. Front Matter
      Pages 2123-2123
    2. Miko Fohrmann, Heiner Igel, Gunnar Jahnke, Yehuda Ben-Zion
      Pages 2125-2137
    3. Sophie Peyrat, Kim B. Olsen, Raúl Madariaga
      Pages 2155-2169
    4. Kazuki Koketsu, Hiroyuki Fujiwara, Yasushi Ikegami
      Pages 2183-2198
  4. Computational Environment and Algorithms

    1. Front Matter
      Pages 2213-2213
    2. D. A. Yuen, G. Erlebacher, O. V. Vasilyev, D. E. Goldstein, M. Fuentes
      Pages 2231-2244
  5. Data Assimilation and Understanding

    1. Front Matter
      Pages 2279-2279
    2. Lisa B. Grant, Miryha M. Gould
      Pages 2295-2306
  6. Model Applications

    1. Front Matter
      Pages 2307-2307
    2. E. Pasternak, H. B. Mühlhaus, A. V. Dyskin
      Pages 2309-2326
    3. Margaret T. Glasscoe, Andrea Donnellan, Louise H. Kellogg, Gregory A. Lyzenga
      Pages 2343-2357
    4. Robert Shcherbakov, donald Turcotte
      Pages 2379-2391
    5. Xiang-Chu Yin, Huai-Zhong Yu, Victor Kukshenko, Zhao-Yong Xu, Zhishen Wu, Min Li et al.
      Pages 2405-2416
    6. H. B. MÜHlhaus, H. B. Moresi, M. CADA
      Pages 2451-2463

About this book


Exciting developments in earthquake science have benefited from new observations, improved computational technologies, and improved modeling capabilities. Designing models of the earthquake generation process is a grand scientific challenge due to the complexity of phenomena and range of scales involved from microscopic to global. Such models provide powerful new tools for the study of earthquake precursory phenomena and the earthquake cycle.

Through workshops, collaborations and publications, the APEC Cooperation for Earthquake Simulations (ACES) aims to develop realistic supercomputer simulation models for the complete earthquake generation process, thus providing a "virtual laboratory" to probe earthquake behavior.

Part II of the book embraces dynamic rupture and wave propagation, computational environment and algorithms, data assimilation and understanding, and applications of models to earthquakes. This part also contains articles on the computational approaches and challenges of constructing earthquake models.


aftershock assimilation earthquake energy environment fault fault zone geophysics modeling modelling research rock mechanics seismic subduction

Editors and affiliations

  • Andrea Donnellan
    • 1
  • Peter Mora
    • 2
  • Mitsuhiro Matsu’ura
    • 3
  • Xiang-chu Yin
    • 4
  1. 1.Earth and Space Sciences Division, Jet Propulsion LaboratoryCalifornia Institute of TechnologyPasadenaUSA
  2. 2.QUAKES, Earth Systems Science Computational Centre (ESSCC), Department of Earth SciencesThe University of QueenslandBrisbaneAustralia
  3. 3.Department of Earth and Planetary ScienceThe University of TokyoTokyoJapan
  4. 4.Center for Analysis and Prediction, CSB & Laboratory of Nonlinear Mechanics, Institute of MechanicsChina Academy of SciencesBeijingChina

Bibliographic information

Industry Sectors
Materials & Steel
Energy, Utilities & Environment
Oil, Gas & Geosciences