Optimal Control

Calculus of Variations, Optimal Control Theory and Numerical Methods

  • R. Bulirsch
  • A. Miele
  • J. Stoer
  • K. Well

Part of the ISNM International Series of Numerical Mathematics book series (ISNM, volume 111)

Table of contents

  1. Front Matter
    Pages I-XIII
  2. Optimality Conditions and Algorithms

  3. Numerical Methods

  4. Analysis and Synthesis of Nonlinear Systems

    1. Front Matter
      Pages 161-161
    2. R. Gabasov, F. M. Kirillova, N. V. Balashevich
      Pages 195-205
    3. Vladimir Kolmanovskii, Natalia Koroleva
      Pages 207-219
  5. Applications to Mechanical and Aerospace Systems

    1. Front Matter
      Pages 249-249
    2. Mark D. Ardema, Evert Cooper
      Pages 251-263
    3. Leszek Mikulski
      Pages 265-272
    4. Roland Bulirsch, Edda Nerz, Hans Josef Pesch, Oskar von Stryk
      Pages 273-288
    5. Gottfried Sachs, Klaus Lesch, Hans Georg Bock, Marc Steinbach
      Pages 289-304
    6. Bernd Kugelmann, Hans Josef Pesch
      Pages 327-339
    7. Rainer Callies
      Pages 341-349
  6. Back Matter
    Pages 350-350

About this book


"Optimal Control" reports on new theoretical and practical advances essential for analysing and synthesizing optimal controls of dynamical systems governed by partial and ordinary differential equations. New necessary and sufficient conditions for optimality are given. Recent advances in numerical methods are discussed. These have been achieved through new techniques for solving large-sized nonlinear programs with sparse Hessians, and through a combination of direct and indirect methods for solving the multipoint boundary value problem. The book also focuses on the construction of feedback controls for nonlinear systems and highlights advances in the theory of problems with uncertainty. Decomposition methods of nonlinear systems and new techniques for constructing feedback controls for state- and control constrained linear quadratic systems are presented. The book offers solutions to many complex practical optimal control problems.


Calculus of Variations Eigenvalue Evolution Optimal control boundary value problem calculus differential equation maximum minimum numerical methods optimization

Editors and affiliations

  • R. Bulirsch
    • 1
  • A. Miele
    • 2
  • J. Stoer
    • 3
  • K. Well
    • 4
  1. 1.Mathematisches InstitutTH MünchenMünchen 2Germany
  2. 2.Dept. of Mechanical Engineering and Materials ScienceHoustonUSA
  3. 3.Mathematik u. StatistikInst. f. AngewandteWürzburgGermany
  4. 4.Inst. f. Flugmechanik u. FlugregelungUniversität StuttgartStuttgartGermany

Bibliographic information