Advertisement

Nonlinear Dynamical Systems and Chaos

  • H. W. Broer
  • S. A. van Gils
  • I. Hoveijn
  • F. Takens

Part of the Progress in Nonlinear Differential Equations and Their Applications book series (PNLDE, volume 19)

Table of contents

  1. Front Matter
    Pages i-vii
  2. Symmetries in dynamical systems

    1. R. Cushman, J. Hermans, D. Kemppainen
      Pages 21-60
    2. I. U. Bronstein, A. Ya. Kopanskii
      Pages 79-101
    3. Jeroen S. W. Lamb, Matthew Nicol
      Pages 103-120
    4. Reiner Lauterbach
      Pages 121-143
    5. Matthias Rumberger, Jürgen Scheurle
      Pages 145-153
    6. Jürgen Knobloch, André Vanderbauwhede
      Pages 155-170
  3. KAM theory and other perturbation theories

    1. H. W. Broer, G. B. Huitema, M. B. Sevryuk
      Pages 171-211
    2. Heinz Hanßmann
      Pages 227-252
    3. A. I. Neishtadt, C. Simó, D. V. Treschev
      Pages 253-278
    4. M. Ruijgrok, F. Verhulst
      Pages 279-298
    5. Marcelo Viana
      Pages 299-324
  4. Infinite dimensional systems

  5. Time series analysis

  6. Numerical continuation and bifurcation analysis

    1. H. W. Broer, H. M. Osinga, G. Vegter
      Pages 423-447
    2. Michael Dellnitz, Andreas Hohmann
      Pages 449-459
  7. Back Matter
    Pages 460-463

About these proceedings

Introduction

Symmetries in dynamical systems, "KAM theory and other perturbation theories", "Infinite dimensional systems", "Time series analysis" and "Numerical continuation and bifurcation analysis" were the main topics of the December 1995 Dynamical Systems Conference held in Groningen in honour of Johann Bernoulli. They now form the core of this work which seeks to present the state of the art in various branches of the theory of dynamical systems. A number of articles have a survey character whereas others deal with recent results in current research. It contains interesting material for all members of the dynamical systems community, ranging from geometric and analytic aspects from a mathematical point of view to applications in various sciences.

Keywords

KAM theory bifurcation chaos dynamical systems time series analysis

Editors and affiliations

  • H. W. Broer
    • 1
  • S. A. van Gils
    • 2
  • I. Hoveijn
    • 1
  • F. Takens
    • 1
  1. 1.Institute of Mathematics and Computer ScienceUniversity of GroningenGroningenThe Netherlands
  2. 2.Faculty of Mathematics and Computer ScienceUniversity of TwenteEnschedeThe Netherlands

Bibliographic information

Industry Sectors
Pharma
Automotive
Chemical Manufacturing
Biotechnology
Finance, Business & Banking
IT & Software
Telecommunications