Advertisement

Grundstrukturen der Analysis II

  • Werner Gähler

Part of the Mathematische Reihe book series (LMW, volume 61)

Table of contents

  1. Front Matter
    Pages I-VIII
  2. Werner Gähler
    Pages 1-281
  3. Werner Gähler
    Pages 282-316
  4. Werner Gähler
    Pages 317-460
  5. Werner Gähler
    Pages 461-595
  6. Back Matter
    Pages 596-623

About this book

Introduction

Zum Aufbau einer geeigneten, umfassenden Differentialrechnung in allgemei­ neren als normierten Räumen benötigt man bekanntlich Konvergenzbegriffe, die nur in Spezialfällen Topologien definieren. Das zeigt sich insbesondere beim Nachweis der Kettenregel höherer Ordnung. Will man etwa die Kettenregel zweiter Ordnung für Abbildungen t: X 0--+ Y und g: Y 0--+ Z beweisen, so bringt man die in der Kettenregel erster Ordnung auftretende Beziehung D(g 0 f) (x) = = Dg(t(x)) 0 Dt(x) unter Benutzung der Kompositionsabbildung y von L(X, Y) X L(Y, Z) in L(X, Z) in die Form D(g 0 f) (x) = (y 0 (Dt, Dg 0 t» (x). Der Nachweis der Kettenregel zweiter Ordnung erfolgt dann mittels der Ketten­ regel erster Ordnung, wobei man die Voraussetzungen so einrichtet, daß (Dt, Dg 0 t> in x und y in (Dt, Dg 0 t> (x) differenzierbar ist. Die Forderung, daß y differenzierbar ist, erweist sich als sehr einschränkend. Verlangt man, daß die Differenzierbarkeit die Stetigkeit nach sich zieht, so ist diese Forderung in Bezug auf Vektorraumtopologien von L(X, Y), L(Y, Z) und L(X, Z) im all­ gemeinen nicht erfüllt, zumindest nicht, wenn man noch annimmt, daß die Vektorraumtopologien so beschaffen sind, daß im Falle X = R oder C die natür­ lichen Zuordnungen zwischen Y und L(X, Y) und zwischen Z und L(X, Z) Iso­ morphien sind.

Keywords

Differentialrechnung Konvergenz Stetigkeit

Authors and affiliations

  • Werner Gähler
    • 1
  1. 1.Zentralinstitut für Mathematik und MechanikAkademie der Wissenschaften der DDRBerlinDeutschland

Bibliographic information

Industry Sectors
Biotechnology