Advertisement

© 1996

Cardinal Invariants on Boolean Algebras

Book

Part of the Progress in Mathematics book series

Table of contents

  1. Front Matter
    Pages i-ix
  2. J. Donald Monk
    Pages 1-8
  3. J. Donald Monk
    Pages 9-24
  4. J. Donald Monk
    Pages 25-44
  5. J. Donald Monk
    Pages 45-85
  6. J. Donald Monk
    Pages 86-106
  7. J. Donald Monk
    Pages 107-115
  8. J. Donald Monk
    Pages 116-124
  9. J. Donald Monk
    Pages 125-132
  10. J. Donald Monk
    Pages 133-144
  11. J. Donald Monk
    Pages 145-146
  12. J. Donald Monk
    Pages 147-153
  13. J. Donald Monk
    Pages 154-163
  14. J. Donald Monk
    Pages 164-174
  15. J. Donald Monk
    Pages 175-180
  16. J. Donald Monk
    Pages 181-189
  17. J. Donald Monk
    Pages 190-195
  18. J. Donald Monk
    Pages 196-217
  19. J. Donald Monk
    Pages 218-225
  20. J. Donald Monk
    Pages 226-231

About this book

Keywords

Boolean algebra Cardinal functions Cellularity Fedorchukís theorem Logic Ultraproduct forcing proof set theory

Authors and affiliations

  1. 1.Department of MathematicsUniversity of ColoradoBoulderUSA

Bibliographic information

  • Book Title Cardinal Invariants on Boolean Algebras
  • Authors J. Donald Monk
  • Series Title Progress in Mathematics
  • DOI https://doi.org/10.1007/978-3-0346-0334-8
  • Copyright Information Birkhäuser Basel 1996
  • Publisher Name Birkhäuser, Basel
  • eBook Packages Springer Book Archive
  • Hardcover ISBN 978-3-7643-5402-2
  • Softcover ISBN 978-3-0346-0333-1
  • eBook ISBN 978-3-0346-0334-8
  • Series ISSN 2197-1803
  • Series E-ISSN 2197-1811
  • Edition Number 1
  • Number of Pages IX, 301
  • Number of Illustrations 0 b/w illustrations, 0 illustrations in colour
  • Additional Information Originally published in the series: Progress in Mathematics Vol 142
  • Topics Algebra
    Mathematical Logic and Foundations
    Order, Lattices, Ordered Algebraic Structures
  • Buy this book on publisher's site

Reviews

From reviews:

"This book is an indispensable tool for anyone working in Boolean algebra, and is also recommended for set-theoretic topologists." - Zentralblatt MATH