© 2020

Electron Paramagnetic Resonance Spectroscopy



About this book


Although originally invented and employed by physicists, electron paramagnetic resonance (EPR) spectroscopy has proven to be a very efficient technique for studying a wide range of phenomena in many fields, such as chemistry, biochemistry, geology, archaeology, medicine, biotechnology, and environmental sciences. Acknowledging that not all studies require the same level of understanding of this technique, this book thus provides a practical treatise clearly oriented toward applications, which should be useful to students and researchers of various levels and disciplines. In this book, the principles of continuous wave EPR spectroscopy are progressively, but rigorously, introduced, with emphasis on interpretation of the collected spectra. Each chapter is followed by a section highlighting important points for applications, together with exercises solved at the end of the book. A glossary defines the main terms used in the book, and particular topics, whose knowledge is not required for understanding the main text, are developed in appendices for more inquisitive readers.


Electron Paramagnetic Resonance Spectroscopy Hyperfine Structure Continuous Wave EPR Spectroscopy Zero-Field Splitting Isotropic Regime Spin States Space Transition Ion Complexes Ligand Field Model

Authors and affiliations

  1. 1.Aix-Marseille University. Marseille, FranceLa Fare en ChampseurFrance

About the authors

Patrick Bertrand received his undergraduate education at the Ecole Centrale de Paris. He received his PhD in physics in 1977 and his doctorat es sciences in 1981. Since 1989, he has been a Professor at the Université de Provence, now Aix-Marseille University. He is a well-known specialist in the applications of EPR spectroscopy to the study of electron-transfer proteins and redox enzymes. He is the author of over a hundred publications and several books in this field.

Bibliographic information


“The book targets graduate students and researchers who are interested in acquiring the broad background knowledge needed to interpret the spectra and understand the applications of EPR technique. A set of problems, with hints to solutions, covers a wide range of difficulty.” (Christian Brosseau, Optics & Photonics News,, October 1, 2020)