Advertisement

Cause Effect Pairs in Machine Learning

  • Isabelle Guyon
  • Alexander Statnikov
  • Berna Bakir Batu
Book

Table of contents

  1. Front Matter
    Pages i-xvi
  2. Fundamentals

    1. Front Matter
      Pages 1-1
    2. Isabelle Guyon, Olivier Goudet, Diviyan Kalainathan
      Pages 27-99
    3. Olivier Goudet, Diviyan Kalainathan, Michèle Sebag, Isabelle Guyon
      Pages 101-153
    4. Diviyan Kalainathan, Olivier Goudet, Michèle Sebag, Isabelle Guyon
      Pages 155-189
    5. Nicolas Doremus, Alessio Moneta, Sebastiano Cattaruzzo
      Pages 191-214
    6. Frederick Eberhardt
      Pages 215-233
  3. Selected Readings

    1. Front Matter
      Pages 235-235
    2. Isabelle Guyon, Alexander Statnikov
      Pages 237-256
    3. Daniel Hernández-Lobato, Pablo Morales-Mombiela, David Lopez-Paz, Alberto Suárez
      Pages 257-299
    4. Gianluca Bontempi, Maxime Flauder
      Pages 301-320
    5. Diogo Moitinho de Almeida
      Pages 321-329
    6. Eric V. Strobl, Shyam Visweswaran
      Pages 359-372

About this book

Introduction

This book presents ground-breaking advances in the domain of causal structure learning. The problem of distinguishing cause from effect (“Does altitude cause a change in atmospheric pressure, or vice versa?”) is here cast as a binary classification problem, to be tackled by machine learning algorithms.  Based on the results of the ChaLearn Cause-Effect Pairs Challenge, this book reveals that the joint distribution of two variables can be scrutinized by machine learning algorithms to reveal the possible existence of a “causal mechanism”, in the sense that the values of one variable may have been generated from the values of the other.  

This book provides both tutorial material on the state-of-the-art on cause-effect pairs and exposes the reader to more advanced material, with a collection of selected papers. Supplemental material includes videos, slides, and code which can be found on the workshop website.

Discovering causal relationships from observational data will become increasingly important in data science with the increasing amount of available data, as a means of detecting potential triggers in epidemiology, social sciences, economy, biology, medicine, and other sciences.

Keywords

Causality cause-effect pairs large scale design causal direction causal inference causality in machine learning causal graphs causal structure learning causal mechanisms

Editors and affiliations

  • Isabelle Guyon
    • 1
  • Alexander Statnikov
    • 2
  • Berna Bakir Batu
    • 3
  1. 1.Team TAU - CNRS, INRIA, Université Paris Sud, Université Paris Saclay, Orsay FranceChaLearnBerkeleyUSA
  2. 2.SoFiSan FranciscoUSA
  3. 3.University of Paris-SudParis-SaclayFrance

Bibliographic information

  • DOI https://doi.org/10.1007/978-3-030-21810-2
  • Copyright Information Springer Nature Switzerland AG 2019
  • Publisher Name Springer, Cham
  • eBook Packages Computer Science
  • Print ISBN 978-3-030-21809-6
  • Online ISBN 978-3-030-21810-2
  • Series Print ISSN 2520-131X
  • Series Online ISSN 2520-1328
  • Buy this book on publisher's site
Industry Sectors
Pharma
Materials & Steel
Automotive
Chemical Manufacturing
Health & Hospitals
Biotechnology
Finance, Business & Banking
Electronics
IT & Software
Telecommunications
Consumer Packaged Goods
Energy, Utilities & Environment
Aerospace
Oil, Gas & Geosciences
Engineering