Advertisement

Advances in Knowledge Discovery and Data Mining

23rd Pacific-Asia Conference, PAKDD 2019, Macau, China, April 14-17, 2019, Proceedings, Part II

  • Qiang Yang
  • Zhi-Hua Zhou
  • Zhiguo Gong
  • Min-Ling Zhang
  • Sheng-Jun Huang
Conference proceedings PAKDD 2019

Part of the Lecture Notes in Computer Science book series (LNCS, volume 11440)

Also part of the Lecture Notes in Artificial Intelligence book sub series (LNAI, volume 11440)

Table of contents

  1. Front Matter
    Pages i-xxix
  2. Deep Learning Models and Applications

    1. Front Matter
      Pages 1-1
    2. Qing Yin, Guan Luo, Xiaodong Zhu, Qinghua Hu, Ou Wu
      Pages 3-15
    3. Wayne Xin Zhao, Hongjian Dou, Yuanpei Zhao, Daxiang Dong, Ji-Rong Wen
      Pages 16-28
    4. Lei Bai, Lina Yao, Salil S. Kanhere, Zheng Yang, Jing Chu, Xianzhi Wang
      Pages 29-42
    5. Manqing Dong, Lina Yao, Xianzhi Wang, Boualem Benatallah, Chaoran Huang
      Pages 56-69
    6. Yinghua Zhang, Yu Zhang, Qiang Yang
      Pages 82-95
    7. Yifeng Zhao, Jie Tang, Zhengxiao Du
      Pages 96-107
    8. Garima Gupta, Vishal Sunder, Ranjitha Prasad, Gautam Shroff
      Pages 108-122
    9. Chih-Hsin Chou, Yu Huang, Chian-Yun Huang, Vincent S. Tseng
      Pages 123-135
    10. Fan Liu, Xingshe Zhou, Jinli Cao, Zhu Wang, Hua Wang, Yanchun Zhang
      Pages 136-149
    11. David Kao, Kuan-Ting Lai, Ming-Syan Chen
      Pages 150-162
    12. Sein Minn, Michel C. Desmarais, Feida Zhu, Jing Xiao, Jianzong Wang
      Pages 163-174
    13. Nan Xu, Guanjie Zheng, Kai Xu, Yanmin Zhu, Zhenhui Li
      Pages 175-187
  3. Sequential Pattern Mining

    1. Front Matter
      Pages 189-189
    2. R. Uday Kiran, T. Yashwanth Reddy, Philippe Fournier-Viger, Masashi Toyoda, P. Krishna Reddy, Masaru Kitsuregawa
      Pages 191-203
    3. Chaochao Chen, Ziqi Liu, Jun Zhou, Xiaolong Li, Yuan Qi, Yujing Jiao et al.
      Pages 204-216
    4. Chun-Hao Liu, Da-Cheng Juan, Xuan-An Tseng, Wei Wei, Yu-Ting Chen, Jia-Yu Pan et al.
      Pages 217-228
    5. Yongzhe Chang, Zhidong Li, Bang Zhang, Ling Luo, Arcot Sowmya, Yang Wang et al.
      Pages 229-241
    6. Chun-Han Lin, Cheng-Wei Wu, JianTao Huang, Vincent S. Tseng
      Pages 253-265
  4. Weakly Supervised Learning

    1. Front Matter
      Pages 267-267
    2. Lijuan Sun, Songhe Feng, Gengyu Lyu, Congyan Lang
      Pages 269-280
    3. Wenzhou Zhang, Weiwei Li, Xiuyi Jia
      Pages 293-304
    4. Xianchao Zhang, Jinlong Nie, Linlin Zong, Hong Yu, Wenxin Liang
      Pages 305-317
    5. Heng-Yi Li, Shu-Ting Shi, Ferdian Thung, Xuan Huo, Bowen Xu, Ming Li et al.
      Pages 318-330
    6. Ningzhao Sun, Jincheng Shan, Chenping Hou
      Pages 331-342
    7. Congqing He, Li Peng, Yuquan Le, Jiawei He
      Pages 343-354
  5. Recommender System

    1. Front Matter
      Pages 355-355
    2. Huifeng Guo, Ruiming Tang, Yunming Ye, Feng Liu, Yuzhou Zhang
      Pages 381-393
    3. Chenyu Zhang, Hao Wang, Shangdong Yang, Yang Gao
      Pages 394-406
    4. Zhicheng He, Jie Liu, Guanghui Xu, Yalou Huang
      Pages 407-419
    5. Zongwei Wang, Min Gao, Xinyi Wang, Junliang Yu, Junhao Wen, Qingyu Xiong
      Pages 420-431
    6. Jianbin Lin, Daixin Wang, Lu Guan, Yin Zhao, Binqiang Zhao, Jun Zhou et al.
      Pages 432-445
  6. Social Network and Graph Mining

    1. Front Matter
      Pages 447-447
    2. Faming Li, Zhaonian Zou, Jianzhong Li, Yingshu Li
      Pages 449-461
    3. Chi Zhang, Osmar R. Zaïane
      Pages 462-474
    4. Pei Zhang, Ke-Jia Chen, Tong Wu
      Pages 475-487
    5. Gaëtan Caillaut, Guillaume Cleuziou, Nicolas Dugué
      Pages 488-500
    6. Jiabao Zhang, Shenghua Liu, Wenjian Yu, Wenjie Feng, Xueqi Cheng
      Pages 501-513
    7. Yang Xiao, Hong Huang, Feng Zhao, Hai Jin
      Pages 514-525
    8. Charini Nanayakkara, Peter Christen, Thilina Ranbaduge
      Pages 526-538
  7. Data Pre-processing and Feature Selection

    1. Front Matter
      Pages 539-539
    2. Xiaojie Liu, Guangxuan Song, Xiaoling Wang
      Pages 553-564

Other volumes

  1. 23rd Pacific-Asia Conference, PAKDD 2019, Macau, China, April 14-17, 2019, Proceedings, Part I
  2. Advances in Knowledge Discovery and Data Mining
    23rd Pacific-Asia Conference, PAKDD 2019, Macau, China, April 14-17, 2019, Proceedings, Part II
  3. 23rd Pacific-Asia Conference, PAKDD 2019, Macau, China, April 14-17, 2019, Proceedings, Part III
  4. PAKDD 2019 Workshops, BDM, DLKT, LDRC, PAISI, WeL, Macau, China, April 14–17, 2019, Revised Selected Papers

About these proceedings

Introduction

The three-volume set LNAI 11439, 11440, and 11441 constitutes the thoroughly refereed proceedings of the 23rd Pacific-Asia Conference on Knowledge Discovery and Data Mining, PAKDD 2019, held in Macau, China, in April 2019.

The 137 full papers presented were carefully reviewed and selected from 542 submissions. The papers present new ideas, original research results, and practical development experiences from all KDD related areas, including data mining, data warehousing, machine learning, artificial intelligence, databases, statistics, knowledge engineering, visualization, decision-making systems, and the emerging applications. They are organized in the following topical sections: classification and supervised learning; text and opinion mining; spatio-temporal and stream data mining; factor and tensor analysis; healthcare, bioinformatics and related topics; clustering and anomaly detection; deep learning models and applications; sequential pattern mining; weakly supervised learning; recommender system; social network and graph mining; data pre-processing and feature
selection; representation learning and embedding; mining unstructured and semi-structured data; behavioral data mining; visual data mining; and knowledge graph and interpretable data mining.

Keywords

anomaly detection artificial intelligence clustering algorithms computational linguistics computer crime data cleaning data mining data security image processing image reconstruction learning algorithms machine learning neural networks recommender systems semantics signal processing social networking supervised learning Support Vector Machines (SVM) World Wide Web

Editors and affiliations

  • Qiang Yang
    • 1
  • Zhi-Hua Zhou
    • 2
  • Zhiguo Gong
    • 3
  • Min-Ling Zhang
    • 4
  • Sheng-Jun Huang
    • 5
  1. 1.Hong Kong University of Science and TechnologyHong KongChina
  2. 2.Nanjing UniversityNanjingChina
  3. 3.University of MacauTaipa, MacauChina
  4. 4.Southeast UniversityNanjingChina
  5. 5.Nanjing University of Aeronautics and AstronauticsNanjingChina

Bibliographic information

  • DOI https://doi.org/10.1007/978-3-030-16145-3
  • Copyright Information Springer Nature Switzerland AG 2019
  • Publisher Name Springer, Cham
  • eBook Packages Computer Science
  • Print ISBN 978-3-030-16144-6
  • Online ISBN 978-3-030-16145-3
  • Series Print ISSN 0302-9743
  • Series Online ISSN 1611-3349
  • Buy this book on publisher's site
Industry Sectors
Pharma
Materials & Steel
Automotive
Chemical Manufacturing
Health & Hospitals
Biotechnology
Finance, Business & Banking
Electronics
IT & Software
Telecommunications
Consumer Packaged Goods
Energy, Utilities & Environment
Aerospace
Oil, Gas & Geosciences
Engineering