Advertisement

Table of contents

  1. Front Matter
    Pages i-xviii
  2. Árpád Bényi, Tadahiro Oh, Oana Pocovnicu
    Pages 1-32
  3. Tommaso Bruno, Anita Tabacco, Maria Vallarino
    Pages 33-58
  4. Stephan Dahlke, Filippo De Mari, Ernesto De Vito, Lukas Sawatzki, Gabriele Steidl, Gerd Teschke et al.
    Pages 75-144
  5. Maurice de Gosson
    Pages 145-158
  6. Gianluca Garello, Alessandro Morando
    Pages 207-224
  7. Stevan Pilipović, Bojan Prangoski
    Pages 249-276
  8. Back Matter
    Pages 343-347

About this book

Introduction

The chapters in this volume are based on talks given at the inaugural Aspects of Time-Frequency Analysis conference held in Turin, Italy from July 5-7, 2018, which brought together experts in harmonic analysis and its applications.  New connections between different but related areas were presented in the context of time-frequency analysis, encouraging future research and collaborations.  Some of the topics covered include:

• Abstract harmonic analysis,
• Numerical harmonic analysis,
• Sampling theory,
• Gabor analysis,
• Time-frequency analysis,
• Mathematical signal processing,
• Pseudodifferential operators, and
• Applications of harmonic analysis to quantum mechanics.

Landscapes of Time-Frequency Analysis will be of particular interest to researchers and advanced students working in time-frequency analysis and other related areas of harmonic 
analysis.

Keywords

Harmonic analysis Fourier analysis Time-frequency analysis Pseudodifferential operators Sampling theory Compressed sensing Mathematical signal processing Applications of harmonic analysis to quantum mechanics Gabor frames Modulation spaces Fourier integral operators

Editors and affiliations

  • Paolo Boggiatto
    • 1
  • Elena Cordero
    • 2
  • Maurice de Gosson
    • 3
  • Hans G. Feichtinger
    • 4
  • Fabio Nicola
    • 5
  • Alessandro Oliaro
    • 6
  • Anita Tabacco
    • 7
  1. 1.Dipartimento di Matematica “G. Peano”University of TorinoTurinItaly
  2. 2.Dipartimento di Matematica “G. Peano”University of TorinoTurinItaly
  3. 3.Faculty of MathematicsUniversity of ViennaViennaAustria
  4. 4.Faculty of MathematicsUniversity of ViennaViennaAustria
  5. 5.Department of Mathematical SciencesPolytechnic University of TorinoTurinItaly
  6. 6.Dipartimento di Matematica “G. Peano”University of TorinoTurinItaly
  7. 7.Department of Mathematical SciencesPolytechnic University of TorinoTurinItaly

Bibliographic information

  • DOI https://doi.org/10.1007/978-3-030-05210-2
  • Copyright Information Springer Nature Switzerland AG 2019
  • Publisher Name Birkhäuser, Cham
  • eBook Packages Mathematics and Statistics
  • Print ISBN 978-3-030-05209-6
  • Online ISBN 978-3-030-05210-2
  • Series Print ISSN 2296-5009
  • Series Online ISSN 2296-5017
  • Buy this book on publisher's site
Industry Sectors
Finance, Business & Banking
Electronics
Energy, Utilities & Environment
Aerospace