Advertisement

© 2010

Guide to Intelligent Data Analysis

How to Intelligently Make Sense of Real Data

Textbook

Part of the Texts in Computer Science book series (TCS)

Table of contents

  1. Front Matter
    Pages I-XIII
  2. Michael R. Berthold, Christian Borgelt, Frank Höppner, Frank Klawonn
    Pages 1-14
  3. Michael R. Berthold, Christian Borgelt, Frank Höppner, Frank Klawonn
    Pages 15-23
  4. Michael R. Berthold, Christian Borgelt, Frank Höppner, Frank Klawonn
    Pages 25-32
  5. Michael R. Berthold, Christian Borgelt, Frank Höppner, Frank Klawonn
    Pages 33-79
  6. Michael R. Berthold, Christian Borgelt, Frank Höppner, Frank Klawonn
    Pages 81-114
  7. Michael R. Berthold, Christian Borgelt, Frank Höppner, Frank Klawonn
    Pages 115-143
  8. Michael R. Berthold, Christian Borgelt, Frank Höppner, Frank Klawonn
    Pages 145-206
  9. Michael R. Berthold, Christian Borgelt, Frank Höppner, Frank Klawonn
    Pages 207-258
  10. Michael R. Berthold, Christian Borgelt, Frank Höppner, Frank Klawonn
    Pages 259-296
  11. Michael R. Berthold, Christian Borgelt, Frank Höppner, Frank Klawonn
    Pages 297-301
  12. Back Matter
    Pages 303-394

About this book

Introduction

Each passing year bears witness to the development of ever more powerful computers, increasingly fast and cheap storage media, and even higher bandwidth data connections. This makes it easy to believe that we can now – at least in principle - solve any problem we are faced with so long as we only have enough data.

Yet this is not the case. Although large databases allow us to retrieve many different single pieces of information and to compute simple aggregations, general patterns and regularities often go undetected. Furthermore, it is exactly these patterns, regularities and trends that are often most valuable.

To avoid the danger of "drowning in information, but starving for knowledge" the branch of research known as data analysis has emerged, and a considerable number of methods and software tools have been developed. However, it is not these tools alone but the intelligent application of human intuition in combination with computational power, of sound background knowledge with computer-aided modeling, and of critical reflection with convenient automatic model construction, that results in successful intelligent data analysis projects. Guide to Intelligent Data Analysis provides a hands-on instructional approach to many basic data analysis techniques, and explains how these are used to solve data analysis problems.

Topics and features:

  • Guides the reader through the process of data analysis, following the interdependent steps of project understanding, data understanding, data preparation, modeling, and deployment and monitoring
  • Equips the reader with the necessary information in order to obtain hands-on experience of the topics under discussion
  • Provides a review of the basics of classical statistics that support and justify many data analysis methods, and a glossary of statistical terms
  • Includes numerous examples using R and KNIME, together with appendices introducing the open source software
  • Integrates illustrations and case-study-style examples to support pedagogical exposition
  • Supplies further tools and information at the associated website: http://www.idaguide.net/

This practical and systematic textbook/reference for graduate and advanced undergraduate students is also essential reading for all professionals who face data analysis problems. Moreover, it is a book to be used following one's exploration of it.

Dr. Michael R. Berthold is Nycomed-Professor of Bioinformatics and Information Mining at the University of Konstanz, Germany. Dr. Christian Borgelt is Principal Researcher at the Intelligent Data Analysis and Graphical Models Research Unit of the European Centre for Soft Computing, Spain. Dr. Frank Höppner is Professor of Information Systems at Ostfalia University of Applied Sciences, Germany. Dr. Frank Klawonn is a Professor in the Department of Computer Science and Head of the Data Analysis and Pattern Recognition Laboratory at Ostfalia University of Applied Sciences, Germany. He is also Head of the Bioinformatics and Statistics group at the Helmholtz Centre for Infection Research, Braunschweig, Germany.

Keywords

KNIME bioinformatics calculus classification cognition data analysis databases knowledge modeling pattern recognition statistics

Authors and affiliations

  1. 1.FB Informatik und, InformationswissenschaftUniversität KonstanzKonstanzGermany
  2. 2.Intelligent Data Analysis & Graphical, Models Research UnitEuropean Centre for Soft ComputingMieresSpain
  3. 3.FB WirtschaftOstfalia University of Applied SciencesWolfsburgGermany
  4. 4.FB InformatikOstfalia University of Applied SciencesWolfenbüttelGermany

Bibliographic information

  • Book Title Guide to Intelligent Data Analysis
  • Book Subtitle How to Intelligently Make Sense of Real Data
  • Authors Michael R. Berthold
    Christian Borgelt
    Frank Höppner
    Frank Klawonn
  • Series Title Texts in Computer Science
  • Series Abbreviated Title Texts in Computer Science (formerly:Graduate Texts Comp.Sc.)
  • DOI https://doi.org/10.1007/978-1-84882-260-3
  • Copyright Information Springer-Verlag London Limited 2010
  • Publisher Name Springer, London
  • eBook Packages Computer Science Computer Science (R0)
  • Hardcover ISBN 978-1-84882-259-7
  • Softcover ISBN 978-1-4471-2572-3
  • eBook ISBN 978-1-84882-260-3
  • Series ISSN 1868-0941
  • Series E-ISSN 1868-095X
  • Edition Number 1
  • Number of Pages XIII, 394
  • Number of Illustrations 63 b/w illustrations, 78 illustrations in colour
  • Topics Artificial Intelligence
  • Buy this book on publisher's site
Industry Sectors
Automotive
Chemical Manufacturing
Biotechnology
IT & Software
Telecommunications
Law
Consumer Packaged Goods
Pharma
Materials & Steel
Finance, Business & Banking
Electronics
Energy, Utilities & Environment
Aerospace
Oil, Gas & Geosciences
Engineering

Reviews

From the reviews:

“The authors, leading scholars in the field based in Germany and Spain, seek to offer a hands-on instructional approach to basic data analysis techniques and consider their use in solving problems. The reader is taken through the process, following the interlinked steps of project understanding, data understanding, data preparation, modelling, and deployment and monitoring. The text reviews the basics of classical statistics that support and justify many data analysis methods, and includes a glossary of statistical terms.” (Times Higher Education, 26 May 2011)

“The clear and complete exposition of arguments, along with the attention to formalization and the balanced number of bibliographic references, make this book a bright introduction to intelligent data analysis. It is an excellent choice for graduate or advanced undergraduate courses, as well as for researchers and professionals who want get acquainted with this field of study. … Overall, the authors hit their target producing a textbook that aids in understanding the basic processes, methods, and issues for intelligent data analysis.” (Corrado Mencar, ACM Computing Reviews, April, 2011)

“The book provides a thorough introduction to data mining that covers theoretical background as well as the use of tools (KNIME and R). The book is intended as a textbook for a broad audience from graduate and advanced undergraduate students to professional data analysts. … each chapter ends with a list of references to identify relevant research. Hence, I recommend this book as an introductory text on data analysis for the intended target audience.” (Gottfried Vossen, Zentralblatt MATH, Vol. 1210, 2011)