Linear Functional Analysis

  • Bryan P. Rynne
  • Martin A. Youngson

Part of the Springer Undergraduate Mathematics Series book series (SUMS)

Table of contents

  1. Front Matter
    Pages I-X
  2. Pages 1-30
  3. Pages 31-50
  4. Pages 87-120
  5. Pages 205-233
  6. Pages 265-313
  7. Back Matter
    Pages 315-324

About this book


This introduction to the ideas and methods of linear functional analysis shows how familiar and useful concepts from finite-dimensional linear algebra can be extended or generalized to infinite-dimensional spaces. Aimed at advanced undergraduates in mathematics and physics, the book assumes a standard background of linear algebra, real analysis (including the theory of metric spaces), and Lebesgue integration, although an introductory chapter summarizes the requisite material.

The initial chapters develop the theory of infinite-dimensional normed spaces, in particular Hilbert spaces, after which the emphasis shifts to studying operators between such spaces. Functional analysis has applications to a vast range of areas of mathematics; the final chapters discuss the particularly important areas of integral and differential equations.

Further highlights of the second edition include:

a new chapter on the Hahn–Banach theorem and its applications to the theory of duality. This chapter also introduces the basic properties of projection operators on Banach spaces, and weak convergence of sequences in Banach spaces - topics that have applications to both linear and nonlinear functional analysis;

extended coverage of the uniform boundedness theorem;

plenty of exercises, with solutions provided at the back of the book.

Praise for the first edition:

"The authors write with a strong narrative thrust and a sensitive appreciation of the needs of the average student so that, by the final chapter, there is a real feeling of having 'gotten somewhere worth getting' by a sensibly paced, clearly signposted route." Mathematical Gazette

"It is a fine book, with material well-organized and well-presented. A particularly useful feature is the material on compact operators and applications to differential equations." CHOICE


Analysis Hilbert space Linear Algebra Operator Theory calculus differential equation functional analysis

Authors and affiliations

  • Bryan P. Rynne
    • 1
  • Martin A. Youngson
    • 1
  1. 1.Department of Mathematics and the Maxwell Institute for Mathematical SciencesHeriot-Watt UniversityEdinburghUK

Bibliographic information

Industry Sectors
Finance, Business & Banking