Advertisement

Motivic Integration

  • Antoine Chambert-Loir
  • Johannes Nicaise
  • Julien Sebag

Part of the Progress in Mathematics book series (PM, volume 325)

Table of contents

  1. Front Matter
    Pages i-xx
  2. Antoine Chambert-Loir, Johannes Nicaise, Julien Sebag
    Pages 1-54
  3. Antoine Chambert-Loir, Johannes Nicaise, Julien Sebag
    Pages 55-151
  4. Antoine Chambert-Loir, Johannes Nicaise, Julien Sebag
    Pages 153-210
  5. Antoine Chambert-Loir, Johannes Nicaise, Julien Sebag
    Pages 211-262
  6. Antoine Chambert-Loir, Johannes Nicaise, Julien Sebag
    Pages 263-303
  7. Antoine Chambert-Loir, Johannes Nicaise, Julien Sebag
    Pages 305-361
  8. Antoine Chambert-Loir, Johannes Nicaise, Julien Sebag
    Pages 363-464
  9. Back Matter
    Pages 465-526

About this book

Introduction

This monograph focuses on the geometric theory of motivic integration, which takes its values in the Grothendieck ring of varieties. This theory is rooted in a groundbreaking idea of Kontsevich and was further developed by Denef & Loeser and Sebag. It is presented in the context of formal schemes over a discrete valuation ring, without any restriction on the residue characteristic. The text first discusses the main features of the Grothendieck ring of varieties, arc schemes, and Greenberg schemes. It then moves on to motivic integration and its applications to birational geometry and non-Archimedean geometry. Also included in the work is a prologue on p-adic analytic manifolds, which served as a model for motivic integration. 

With its extensive discussion of preliminaries and applications, this book is an ideal resource for graduate students of algebraic geometry and researchers of motivic integration. It will also serve as a motivation for more recent and sophisticated theories that have been developed since. 

Keywords

Greenberg schemes Grothendieck ring of varieties arc spaces birational invariants p-adic integration change of variables formula motivic zeta function motivic Serre invariant Igusa's Monodromy conjecture

Authors and affiliations

  • Antoine Chambert-Loir
    • 1
  • Johannes Nicaise
    • 2
  • Julien Sebag
    • 3
  1. 1.Département de MathématiquesUniversité Paris-Sud OrsayOrsayFrance
  2. 2.Department of MathematicsUniversity of LeuvenHeverleeBelgium
  3. 3.Département de MathématiquesUniversité de Rennes 1RennesFrance

Bibliographic information

  • DOI https://doi.org/10.1007/978-1-4939-7887-8
  • Copyright Information Springer Science+Business Media, LLC, part of Springer Nature 2018
  • Publisher Name Birkhäuser, New York, NY
  • eBook Packages Mathematics and Statistics
  • Print ISBN 978-1-4939-7885-4
  • Online ISBN 978-1-4939-7887-8
  • Series Print ISSN 0743-1643
  • Series Online ISSN 2296-505X
  • Buy this book on publisher's site