Advertisement

© 2017

Statistical Analysis with Measurement Error or Misclassification

Strategy, Method and Application

Book

Part of the Springer Series in Statistics book series (SSS)

Table of contents

  1. Front Matter
    Pages i-xxvii
  2. Grace Y. Yi
    Pages 1-41
  3. Grace Y. Yi
    Pages 87-150
  4. Grace Y. Yi
    Pages 257-300
  5. Grace Y. Yi
    Pages 353-393
  6. Grace Y. Yi
    Pages 395-410
  7. Back Matter
    Pages 411-479

About this book

Introduction

This monograph on measurement error and misclassification covers a broad range of problems and emphasizes unique features in modeling and analyzing problems arising from medical research and epidemiological studies. Many measurement error and misclassification problems have been addressed in various fields over the years as well as with a wide spectrum of data, including event history data (such as survival data and recurrent event data), correlated data (such as longitudinal data and clustered data), multi-state event data, and data arising from case-control studies. Statistical Analysis with Measurement Error or Misclassification:  Strategy, Method and Application brings together assorted methods in a single text and provides an update of recent developments for a variety of settings. Measurement error effects and strategies of handling mismeasurement for different models are closely examined in combination with applications to specific problems.

Readers with diverse backgrounds and objectives can utilize this text. Familiarity with inference methods—such as likelihood and estimating function theory—or modeling schemes in varying settings—such as survival analysis and longitudinal data analysis—can result in a full appreciation of the material, but it is not essential since each chapter provides basic inference frameworks and background information on an individual topic to ease the access of the material.  The text is presented in a coherent and self-contained manner and highlights the essence of commonly used modeling and inference methods.

This text can serve as a reference book for researchers  interested in statistical methodology for handling data with measurement error or misclassification; as a textbook for graduate students, especially for those majoring in statistics and biostatistics; or as a book for applied statisticians whose interest focuses on analysis of error-contaminated data.

Grace Y. Yi is Professor of Statistics and University Research Chair at the University of Waterloo. She is the 2010 winner of the CRM-SSC Prize, an honor awarded in recognition of a statistical scientist's professional accomplishments in research during the first 15 years after having received a doctorate. She is a Fellow of the American Statistical Association and an Elected Member of the International Statistical Institute. 

Keywords

measurement error misclassification mismeasurement survival analysis longitudinal data generalized linear models inference methods response variable

Authors and affiliations

  1. 1.Department of Statistics and Actuarial ScienceUniversity of WaterlooWaterlooCanada

About the authors

Grace Y. Yi is Professor of Statistics and University Research Chair at the University of Waterloo. Her broad research interests include measurement error models, missing data problems, high dimensional data analysis, survival data and longitudinal data analysis, estimating function and likelihood methods, and medical applications. Prof. Yi received her Ph.D. in Statistics from the University of Toronto in 2000.  She is the 2010 winner of the CRM-SSC Prize, an honor awarded in recognition of a statistical scientist's professional accomplishments in research during the first 15 years after having received a doctorate. She was a recipient of the prestigious University Faculty Award granted by the Natural Sciences and Engineering Research Council of Canada (NSERC). She serves as an associate editor for several statistical journals, and is the editor of the Canadian Journal of Statistics (2016-2018). She is a Fellow of the American Statistical Association, and an Elected Member of the International Statistical Institute. She is President of the Biostatistics Section of the Statistical Society of Canada in 2016, and the Founder and Chair of the first chapter (Canada Chapter) of the  International Chinese Statistical Association. 

Bibliographic information

Industry Sectors
Health & Hospitals
Biotechnology
IT & Software
Telecommunications
Consumer Packaged Goods
Oil, Gas & Geosciences
Pharma
Materials & Steel
Finance, Business & Banking
Electronics
Energy, Utilities & Environment
Aerospace

Reviews

“This book constitutes a comprehensive and thorough treatment of measurement error and misclassification in survival data, recurrent event data, longitudinal data, multi-state models, and case-control studies. … the book is well written and a pleasure to read.” (Rianne Jacobs, ISCB News, iscb.info, Issue 65, June, 2018)

“This book successfully collects, compiles, organizes, and presents the literature on the newly developed and earlier existing topics of measurement error models and misclassification in a crisp and concise way without losing the clarity in understanding. … I am sure it will stimulate researchers in and newcomers to this area.” (Shalabh, Mathematical Reviews, June, 2018)

“This book covers a wide range of topics in a unified framework where measurement error and misclassification problems receive careful treatments, from both practical and theoretical points of view. … This book can serve well as a textbook for a graduate-level course on measurement error in a (bio)statistics department … . Besides ample real life applications presented in the book, from which students can appreciate practical relevance of measurement error problems … .” (Xianzheng Huang, Journal of the American Statistical Association JASA, Vol. 113 (522), 2018)