Advertisement

Table of contents

  1. Front Matter
    Pages i-ix
  2. Introduction

    1. Richard Kane, Jonathan Borwein, Peter Borwein
      Pages 1-3
  3. Reflection groups

    1. Front Matter
      Pages 5-5
    2. Richard Kane, Jonathan Borwein, Peter Borwein
      Pages 6-24
    3. Richard Kane, Jonathan Borwein, Peter Borwein
      Pages 25-34
    4. Richard Kane, Jonathan Borwein, Peter Borwein
      Pages 35-44
    5. Richard Kane, Jonathan Borwein, Peter Borwein
      Pages 45-56
    6. Richard Kane, Jonathan Borwein, Peter Borwein
      Pages 57-63
  4. Coxeter groups

    1. Front Matter
      Pages 65-65
    2. Richard Kane, Jonathan Borwein, Peter Borwein
      Pages 66-74
    3. Richard Kane, Jonathan Borwein, Peter Borwein
      Pages 75-80
    4. Richard Kane, Jonathan Borwein, Peter Borwein
      Pages 81-96
  5. Weyl groups

    1. Front Matter
      Pages 97-97
    2. Richard Kane, Jonathan Borwein, Peter Borwein
      Pages 98-108
    3. Richard Kane, Jonathan Borwein, Peter Borwein
      Pages 109-117
    4. Richard Kane, Jonathan Borwein, Peter Borwein
      Pages 118-134
    5. Richard Kane, Jonathan Borwein, Peter Borwein
      Pages 135-143
    6. Richard Kane, Jonathan Borwein, Peter Borwein
      Pages 144-151
  6. Pseudo-reflection groups

    1. Front Matter
      Pages 153-153
    2. Richard Kane, Jonathan Borwein, Peter Borwein
      Pages 154-160
    3. Richard Kane, Jonathan Borwein, Peter Borwein
      Pages 161-167
  7. Rings of invariants

    1. Front Matter
      Pages 169-169
    2. Richard Kane, Jonathan Borwein, Peter Borwein
      Pages 170-179
    3. Richard Kane, Jonathan Borwein, Peter Borwein
      Pages 180-190
    4. Richard Kane, Jonathan Borwein, Peter Borwein
      Pages 191-201
    5. Richard Kane, Jonathan Borwein, Peter Borwein
      Pages 202-211
  8. Skew invariants

    1. Front Matter
      Pages 213-213
    2. Richard Kane, Jonathan Borwein, Peter Borwein
      Pages 214-220
    3. Richard Kane, Jonathan Borwein, Peter Borwein
      Pages 221-228
    4. Richard Kane, Jonathan Borwein, Peter Borwein
      Pages 229-234
  9. Rings of covariants

    1. Front Matter
      Pages 235-235
    2. Richard Kane, Jonathan Borwein, Peter Borwein
      Pages 236-246
    3. Richard Kane, Jonathan Borwein, Peter Borwein
      Pages 247-255
    4. Richard Kane, Jonathan Borwein, Peter Borwein
      Pages 256-262
    5. Richard Kane, Jonathan Borwein, Peter Borwein
      Pages 263-278
  10. Conjugacy classes

    1. Front Matter
      Pages 279-279
    2. Richard Kane, Jonathan Borwein, Peter Borwein
      Pages 280-289
    3. Richard Kane, Jonathan Borwein, Peter Borwein
      Pages 290-298
    4. Richard Kane, Jonathan Borwein, Peter Borwein
      Pages 299-310
    5. Richard Kane, Jonathan Borwein, Peter Borwein
      Pages 311-317
  11. Eigenvalues

    1. Front Matter
      Pages 319-319
    2. Richard Kane, Jonathan Borwein, Peter Borwein
      Pages 320-324
    3. Richard Kane, Jonathan Borwein, Peter Borwein
      Pages 325-333
    4. Richard Kane, Jonathan Borwein, Peter Borwein
      Pages 334-340
    5. Richard Kane, Jonathan Borwein, Peter Borwein
      Pages 341-348
  12. Back Matter
    Pages 349-379

About this book

Introduction

Reflection Groups and their invariant theory provide the main themes of this book and the first two parts focus on these topics. The first 13 chapters deal with reflection groups (Coxeter groups and Weyl groups) in Euclidean Space while the next thirteen chapters study the invariant theory of pseudo-reflection groups. The third part of the book studies conjugacy classes of the elements in reflection and pseudo-reflection groups. The book has evolved from various graduate courses given by the author over the past 10 years. It is intended to be a graduate text, accessible to students with a basic background in algebra.
Richard Kane is a professor of mathematics at the University of Western Ontario. His research interests are algebra and algebraic topology. Professor Kane is a former President of the Canadian Mathematical Society.

Keywords

Algebraic topology Eigenvalue algebra minimum representation theory

Authors and affiliations

  • Richard Kane
    • 1
  1. 1.Department of MathematicsUniversity of Western OntarioLondonCanada

Editors and affiliations

  • Jonathan Borwein
    • 1
  • Peter Borwein
    • 1
  1. 1.Centre for Experimental and Constructive Mathematics, Department of Mathematics and StatisticsSimon Fraser UniversityBurnabyCanada

Bibliographic information

  • DOI https://doi.org/10.1007/978-1-4757-3542-0
  • Copyright Information Springer-Verlag New York 2001
  • Publisher Name Springer, New York, NY
  • eBook Packages Springer Book Archive
  • Print ISBN 978-1-4419-3194-8
  • Online ISBN 978-1-4757-3542-0
  • Series Print ISSN 1613-5237
  • Buy this book on publisher's site
Industry Sectors
Pharma
Automotive
Chemical Manufacturing
Biotechnology
Finance, Business & Banking
IT & Software
Telecommunications