© 1998

Conics and Cubics

A Concrete Introduction to Algebraic Curves


Part of the Undergraduate Texts in Mathematics book series (UTM)

Table of contents

  1. Front Matter
    Pages i-x
  2. Robert Bix
    Pages 1-68
  3. Robert Bix
    Pages 69-125
  4. Robert Bix
    Pages 126-227
  5. Robert Bix
    Pages 228-283
  6. Back Matter
    Pages 285-292

About this book


Conics and Cubics is an accessible introduction to algebraic curves. Its focus on curves of degree at most three keeps results tangible and proofs transparent. Theorems follow naturally from high school algebra and two key ideas: homogenous coordinates and intersection multiplicities.

By classifying irreducible cubics over the real numbers and proving that their points form Abelian groups, the book gives readers easy access to the study of elliptic curves. It includes a simple proof of Bezout's Theorem on the number of intersections of two curves.

The book is a text for a one-semester course on algebraic curves for junior-senior mathematics majors. The only prerequisite is first-year calculus.

The new edition introduces the deeper study of curves through parametrization by power series. Two uses of parametrizations are presented: counting multiple intersections of curves and proving the duality of curves and their envelopes.

About the first edition:

"The book...belongs in the admirable tradition of laying the foundations of a difficult and potentially abstract subject by means of concrete and accessible examples."

- Peter Giblin, MathSciNet


Area Calc Grad Mathematica Microsoft Access Natural algebra algebraic curve algebraic geometry analytic geometry calculus class design proof topology

Authors and affiliations

  1. 1.Department of MathematicsThe University of Michigan-FlintFlintUSA

Bibliographic information

  • Book Title Conics and Cubics
  • Book Subtitle A Concrete Introduction to Algebraic Curves
  • Authors Robert Bix
  • Series Title Undergraduate Texts in Mathematics
  • DOI
  • Copyright Information Springer-Verlag New York 1998
  • Publisher Name Springer, New York, NY
  • eBook Packages Springer Book Archive
  • Hardcover ISBN 978-0-387-98401-8
  • Softcover ISBN 978-1-4757-2977-1
  • eBook ISBN 978-1-4757-2975-7
  • Series ISSN 0172-6056
  • Edition Number 1
  • Number of Pages X, 292
  • Number of Illustrations 0 b/w illustrations, 0 illustrations in colour
  • Topics Geometry
    Algebraic Geometry
    Numerical Analysis
  • Buy this book on publisher's site