Genetic Engineering of Microorganisms for Chemicals

  • Alexander Hollaender
  • Ralph D. DeMoss
  • Samuel Kaplan
  • Jordan Konisky
  • Dwayne Savage
  • Ralph S. Wolfe

Part of the Basic Life Sciences book series

Table of contents

  1. Front Matter
    Pages i-xiii
  2. Irwin C. Gunsalus
    Pages 1-2
  3. Alexander Hollaender
    Pages 3-4
  4. Michael Bittner, Daniel Vapnek
    Pages 29-49
  5. Paul S. Lovett, Donna M. Williams, Elizabeth J. Duvall
    Pages 51-57
  6. Stanley Dagley
    Pages 73-74
  7. James A. Shapiro, A. Carbit, S. Benson, M. Caruso, R. Laux, R. Meyer et al.
    Pages 101-102
  8. Louis A. Sherman, James Guikema
    Pages 103-131
  9. James A. Hoch, Ahn Nguyen, Eugenio Ferrari
    Pages 163-173
  10. L. S. Baron, D. J. Kopecko, S. M. McCowen, N. J. Snellings, E. M. Johnson, W. C. Reid et al.
    Pages 175-194
  11. Francis L. Macrina, Janet Ash Tobian, Kevin R. Jones, R. Paul Evans
    Pages 195-210
  12. John N. Reeve, Nancy J. Trun, Paul T. Hamilton
    Pages 233-244
  13. Samuel Kaplan, Chester Fornari, Joanne Chory, Bill Yen
    Pages 245-258
  14. Elliot Juni
    Pages 259-270
  15. Mary L. Skotnicki, K. J. Lee, D. E. Tribe, P. L. Rogers
    Pages 271-290
  16. Michael J. Holland, Janice P. Holland, Lee McAllister
    Pages 291-303
  17. Christopher Wills, Paul Kratofil, Tracy Martin
    Pages 305-329
  18. James B. Johnston
    Pages 331-333
  19. T. Young, V. Williamson, A. Taguchi, M. Smith, A. Sledziewski, D. Russell et al.
    Pages 335-361
  20. David P. Clark, William Lorowitz, John E. Cronan Jr.
    Pages 363-369
  21. I. J. Higgins, D. J. Best, D. Scott
    Pages 383-402
  22. William L. Ellefson, William B. Whitman
    Pages 403-414
  23. Lowell P. Hager
    Pages 415-429
  24. Raymond C. Valentine, Robert Rabson, Oldrich Sebek, Donald Helinski, Kjell Andersen
    Pages 445-468
  25. Back Matter
    Pages 469-485

About this book


The normal course of most biologically catalyzed processes is tightly regulated at the genetic and physiological levels. The regulatory mechanisms are diverse, sometimes redundant, and it is becoming increasingly apparent that, at the genetic level, the range of mechanisms may be limited only by the permutations and combina­ tions available. For each microbial cell, evolution appears to have resulted in maximized advantage to that cell, achieving regulatory balance. Genetic engineering encompasses our attempts to perturb the genetic regulation of a cell so that we may obtain desired other than normal outcomes, such as increased product formation, or new product formation. Following the groundwork established by a preceding symposium (Trends in the Biology of Fermentations for Fuels and Chemicals, Brookhaven National Laboratory, December 1980), the initial planning for this conference envisioned the juxtaposition of molecular genetic expertise and microbial biochemical expertise. The resultant interaction should encourage new and extended ideas for the improve­ ment of strains and for the generation of new regulatory combina­ tions to enhance microbial chemical production from cheap and abundant (including waste) substrates. The interaction should also demonstrate that new discoveries at the basic level remain essential to progress in genetic engineering. New genetic regulatory combina­ tions require new studies of physiology and biochemistry to assure understanding and control of the system. New biochemical reactions necessitate new studies of genetic and regulatory interaction.


Fermentation biochemistry chemistry genetic engineering physiology reaction

Editors and affiliations

  • Alexander Hollaender
    • 1
  • Ralph D. DeMoss
    • 2
  • Samuel Kaplan
  • Jordan Konisky
  • Dwayne Savage
  • Ralph S. Wolfe
  1. 1.Associated Universities, Inc.USA
  2. 2.Department of MicrobiologyUniversity of IllinoisChampaignUSA

Bibliographic information

Industry Sectors
Materials & Steel
Health & Hospitals
Consumer Packaged Goods