© 1998

Text Retrieval and Filtering

Analytic Models of Performance


Part of the The Information Retrieval Series book series (INRE, volume 3)

Table of contents

  1. Front Matter
    Pages i-xiii
  2. Robert M. Losee
    Pages 1-17
  3. Robert M. Losee
    Pages 19-41
  4. Robert M. Losee
    Pages 43-75
  5. Robert M. Losee
    Pages 77-92
  6. Robert M. Losee
    Pages 93-109
  7. Robert M. Losee
    Pages 111-127
  8. Robert M. Losee
    Pages 129-149
  9. Robert M. Losee
    Pages 151-169
  10. Robert M. Losee
    Pages 171-201
  11. Robert M. Losee
    Pages 203-226
  12. Back Matter
    Pages 227-242

About this book


Text Retrieval and Filtering: Analytical Models of Performance is the first book that addresses the problem of analytically computing the performance of retrieval and filtering systems. The book describes means by which retrieval may be studied analytically, allowing one to describe current performance, predict future performance, and to understand why systems perform as they do. The focus is on retrieving and filtering natural language text, with material addressing retrieval performance for the simple case of queries with a single term, the more complex case with multiple terms, both with term independence and term dependence, and for the use of grammatical information to improve performance. Unambiguous statements of the conditions under which one method or system will be more effective than another are developed.
Text Retrieval and Filtering: Analytical Models of Performance focuses on the performance of systems that retrieve natural language text, considering full sentences as well as phrases and individual words. The last chapter explicitly addresses how grammatical constructs and methods may be studied in the context of retrieval or filtering system performance. The book builds toward solving this problem, although the material in earlier chapters is as useful to those addressing non-linguistic, statistical concerns as it is to linguists. Those interested in grammatical information should be cautioned to carefully examine earlier chapters, especially Chapters 7 and 8, which discuss purely statistical relationships between terms, before moving on to Chapter 10, which explicitly addresses linguistic issues.
Text Retrieval and Filtering: Analytical Models of Performance is suitable as a secondary text for a graduate level course on Information Retrieval or Linguistics, and as a reference for researchers and practitioners in industry.


filtering information information retrieval linguistics natural language performance text retrieval

Authors and affiliations

  1. 1.University of North CarolinaChapel HillUSA

Bibliographic information

Industry Sectors
IT & Software
Consumer Packaged Goods
Finance, Business & Banking